New! Sign up for our free email newsletter.
Science News
from research organizations

Biomass offsets little or none of permafrost carbon release

Date:
March 25, 2016
Source:
Northern Arizona University
Summary:
An expert assessment helps quantify the amount of carbon dioxide that will be released in the Arctic following climate-related changes in the biomass.
Share:
FULL STORY

Scientists who study climate and ecosystems in the Arctic have weighed in on future changes in the region affecting soils, streams and wildfire, which will be releasing greater amounts of carbon dioxide and other greenhouse gases into the atmosphere.

Because the Arctic is home to billions of tons of naturally occurring carbon stored in frozen soil, researchers are turning their focus to trying to quantify potential effects of large-scale permafrost thawing.

An expert assessment was published this month in Environmental Research Letters, which compiled quantitative input on the high-latitude carbon balance from 98 researchers including Northern Arizona University's Ted Schuur, Michelle Mack and Christina Schaedel.

Schaedel, whose expertise includes permafrost carbon and plant ecophysiology, filled out the biomass survey evaluating changes in the boreal forest and arctic tundra non-soil biomass for four different warming scenarios and three different time frames: the short term, near the end of the current century and a long-term scenario ending in 2300.

As temperatures continue to inch up, shifts in carbon are expected from additional wildfires and the collapse of coastlines, which release carbon into the ocean. Schaedel said a change or loss in biomass could mean that the permafrost region will become a strong source of carbon.

"Results from this expert opinion survey indicate that tundra and boreal biomass might not offset much of permafrost carbon release when considering the different warming scenarios and that the only way to keep permafrost carbon in the ground is to reduce human emissions," Schaedel said.

As frozen soil in the Arctic continues to thaw at a relatively fast pace, researchers are focused on the permafrost carbon cycle, quantifying the amount of carbon released to the atmosphere, the ocean and consumed by microbes. Among experts queried for this study, under a business-as-usual scenario in the Arctic region, five-times more net carbon would be released by 2100.

Findings also suggested that if human emissions were rapidly reduced, the thawing of temperature-sensitive permafrost could be drastically reduced.

This expert analysis can be considered a powerful tool in an evolving field of research, which needs more empirical data and advanced model-based assessments, Schaedel added. The findings also identify key areas for future research needs.


Story Source:

Materials provided by Northern Arizona University. Note: Content may be edited for style and length.


Journal Reference:

  1. Benjamin W Abbott, Jeremy B Jones, Edward A G Schuur, F Stuart Chapin III, William B Bowden, M Syndonia Bret-Harte, Howard E Epstein, Michael D Flannigan, Tamara K Harms, Teresa N Hollingsworth, Michelle C Mack, A David McGuire, Susan M Natali, Adrian V Rocha, Suzanne E Tank, Merritt R Turetsky, Jorien E Vonk, Kimberly P Wickland, George R Aiken, Heather D Alexander, Rainer M W Amon, Brian W Benscoter, Yves Bergeron, Kevin Bishop, Olivier Blarquez, Ben Bond-Lamberty, Amy L Breen, Ishi Buffam, Yihua Cai, Christopher Carcaillet, Sean K Carey, Jing M Chen, Han Y H Chen, Torben R Christensen, Lee W Cooper, J Hans C Cornelissen, William J de Groot, Thomas H DeLuca, Ellen Dorrepaal, Ned Fetcher, Jacques C Finlay, Bruce C Forbes, Nancy H F French, Sylvie Gauthier, Martin P Girardin, Scott J Goetz, Johann G Goldammer, Laura Gough, Paul Grogan, Laodong Guo, Philip E Higuera, Larry Hinzman, Feng Sheng Hu, Gustaf Hugelius, Elchin E Jafarov, Randi Jandt, Jill F Johnstone, Jan Karlsson, Eric S Kasischke, Gerhard Kattner, Ryan Kelly, Frida Keuper, George W Kling, Pirkko Kortelainen, Jari Kouki, Peter Kuhry, Hjalmar Laudon, Isabelle Laurion, Robie W Macdonald, Paul J Mann, Pertti J Martikainen, James W McClelland, Ulf Molau, Steven F Oberbauer, David Olefeldt, David Paré, Marc-André Parisien, Serge Payette, Changhui Peng, Oleg S Pokrovsky, Edward B Rastetter, Peter A Raymond, Martha K Raynolds, Guillermo Rein, James F Reynolds, Martin Robards, Brendan M Rogers, Christina Schädel, Kevin Schaefer, Inger K Schmidt, Anatoly Shvidenko, Jasper Sky, Robert G M Spencer, Gregory Starr, Robert G Striegl, Roman Teisserenc, Lars J Tranvik, Tarmo Virtanen, Jeffrey M Welker, Sergei Zimov. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016; 11 (3): 034014 DOI: 10.1088/1748-9326/11/3/034014

Cite This Page:

Northern Arizona University. "Biomass offsets little or none of permafrost carbon release." ScienceDaily. ScienceDaily, 25 March 2016. <www.sciencedaily.com/releases/2016/03/160325093847.htm>.
Northern Arizona University. (2016, March 25). Biomass offsets little or none of permafrost carbon release. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2016/03/160325093847.htm
Northern Arizona University. "Biomass offsets little or none of permafrost carbon release." ScienceDaily. www.sciencedaily.com/releases/2016/03/160325093847.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES