New! Sign up for our free email newsletter.
Science News
from research organizations

New computational model finds new protein-protein interactions in schizophrenia

Approach can shed new light on biological processes affected by the mental illness

Date:
April 27, 2016
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Researchers have discovered new protein-protein interactions in schizophrenia. The findings could lead to greater understanding of the biological underpinnings of this mental illness, as well as point the way to treatments.
Share:
FULL STORY

Using a computational model they developed, researchers at the University of Pittsburgh School of Medicine have discovered more than 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia. The findings, published online in npj Schizophrenia, a Nature Publishing Group journal, could lead to greater understanding of the biological underpinnings of this mental illness, as well as point the way to treatments.

There have been many genome-wide association studies (GWAS) that have identified gene variants associated with an increased risk for schizophrenia, but in most cases there is little known about the proteins that these genes make, what they do and how they interact, said senior investigator Madhavi Ganapathiraju, Ph.D., assistant professor of biomedical informatics, Pitt School of Medicine.

"GWAS studies and other research efforts have shown us what genes might be relevant in schizophrenia," she said. "What we have done is the next step. We are trying to understand how these genes relate to each other, which could show us the biological pathways that are important in the disease."

Each gene makes proteins and proteins typically interact with each other in a biological process. Information about interacting partners can shed light on the role of a gene that has not been studied, revealing pathways and biological processes associated with the disease and also its relation to other complex diseases.

Dr. Ganapathiraju's team developed a computational model called High-Precision Protein Interaction Prediction (HiPPIP) and applied it to discover PPIs of schizophrenia-linked genes identified through GWAS, as well as historically known risk genes. They found 504 never-before known PPIs, and noted also that while schizophrenia-linked genes identified historically and through GWAS had little overlap, the model showed they shared more than 100 common interactors.

"We can infer what the protein might do by checking out the company it keeps," Dr. Ganapathiraju explained. "For example, if I know you have many friends who play hockey, it could mean that you are involved in hockey, too. Similarly, if we see that an unknown protein interacts with multiple proteins involved in neural signaling, for example, there is a high likelihood that the unknown entity also is involved in the same."


Story Source:

Materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Content may be edited for style and length.


Journal Reference:

  1. Madhavi K Ganapathiraju, Mohamed Thahir, Adam Handen, Saumendra N Sarkar, Robert A Sweet, Vishwajit L Nimgaonkar, Christine E Loscher, Eileen M Bauer, Srilakshmi Chaparala. Schizophrenia interactome with 504 novel protein–protein interactions. npj Schizophrenia, 2016; 2: 16012 DOI: 10.1038/npjschz.2016.12

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "New computational model finds new protein-protein interactions in schizophrenia." ScienceDaily. ScienceDaily, 27 April 2016. <www.sciencedaily.com/releases/2016/04/160427151020.htm>.
University of Pittsburgh Schools of the Health Sciences. (2016, April 27). New computational model finds new protein-protein interactions in schizophrenia. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2016/04/160427151020.htm
University of Pittsburgh Schools of the Health Sciences. "New computational model finds new protein-protein interactions in schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2016/04/160427151020.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES