Science News
from research organizations

Autophagy under the microscope as never before

Dissecting the cell's recycling process in super reolution

Date:
August 11, 2016
Source:
Babraham Institute
Summary:
We don't tend to wrap our recycling waste in bubble wrap but that's essentially what cells do during the cellular recycling process called autophagy. Researchers have viewed the earliest stages of this encapsulation and recycling process in super resolution to reveal what's happening in unprecedented molecular detail.
Share:
FULL STORY

We don't tend to wrap our recycling waste in bubble wrap but that's essentially what cells do during the cellular recycling process called autophagy. Using the live imaging capabilities at the Babraham Institute, Institute researchers and their collaborators at Carl Zeiss Microscopy, Munich, and the Francis Crick Institute, London, have viewed the earliest stages of this encapsulation and recycling process in super resolution to reveal what's happening in unprecedented molecular detail. Their research is published in the journal Nature Communications.

Derived from the Greek and meaning 'self-eating', autophagy describes a process whereby cellular contents are collected and recycled into new molecules and cellular structures; a process of reclaiming the unwanted or damaged and using them to create something useful for the cell. Autophagy is fundamental to the function of our bodies. As the clean-up mechanism for cellular debris, loss of efficiency or glitches in this process are associated with aging and aging-related diseases such as Alzheimer's, rheumatoid arthritis and cancer.

The researchers focused on determining the origin and formation of a structure only seen at the very start of the autophagy process but which gives rise to the main structure (autophagosome; the cellular 'bubble wrap') that envelops the content targeted for degradation. Due to its short-lived nature, this transient structure was difficult to characterise. The researchers jointly developed a new comprehensive imaging-based approach for observing autophagy-related structures. At the Babraham Institute this was achieved using live imaging followed by dStorm (direct Stochastic Optical Reconstruction Microscopy). At the Francis Crick Institute in London and the Zeiss Microscopy Labs in Munich, the researchers used a method called FIB-SEM (Focused Ion Beam Scanning Electron Microscopy). By combining the information gathered from these two methods, the researchers were able to identify how the first autophagy structure forms and clarify the protein and membrane associations leading to its development into a fully-fledged autophagosome.

Dr Nicholas Ktistakis, group leader in the Signalling research programme at the Babraham Institute and lead senior author, said: "By combining live imaging with cutting-edge super resolution microscopy techniques, we have been able to characterise the site of autophagy initiation and observe the physical and functional interactions between the proteins involved in autophagy. This has uncovered a new level of detail of the earliest stages of autophagy and provides a general protocol for this type of analysis in other areas of cell biology.

"Knowing more about this process increases our ability to find ways to manipulate or boost it for future therapeutic benefit."


Story Source:

Materials provided by Babraham Institute. Note: Content may be edited for style and length.


Journal References:

  1. Eleftherios Karanasios, Simon A. Walker, Hanneke Okkenhaug, Maria Manifava, Eric Hummel, Hans Zimmermann, Qashif Ahmed, Marie-Charlotte Domart, Lucy Collinson, Nicholas T. Ktistakis. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nature Communications, 2016; 7: 12420 DOI: 10.1038/ncomms12420
  2. Eleftherios Karanasios, Simon A. Walker, Hanneke Okkenhaug, Maria Manifava, Eric Hummel, Hans Zimmermann, Qashif Ahmed, Marie-Charlotte Domart, Lucy Collinson, Nicholas T. Ktistakis. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nature Communications, 2016; 7: 12420 DOI: 10.1038/ncomms12420

Cite This Page:

Babraham Institute. "Autophagy under the microscope as never before: Dissecting the cell's recycling process in super reolution." ScienceDaily. ScienceDaily, 11 August 2016. <www.sciencedaily.com/releases/2016/08/160811131617.htm>.
Babraham Institute. (2016, August 11). Autophagy under the microscope as never before: Dissecting the cell's recycling process in super reolution. ScienceDaily. Retrieved May 23, 2017 from www.sciencedaily.com/releases/2016/08/160811131617.htm
Babraham Institute. "Autophagy under the microscope as never before: Dissecting the cell's recycling process in super reolution." ScienceDaily. www.sciencedaily.com/releases/2016/08/160811131617.htm (accessed May 23, 2017).

RELATED STORIES