New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quark

Quarks are one of the two basic constituents of matter in the Standard Model of particle physics. (The others are leptons.) Antiparticles of quarks are called antiquarks. Quarks and antiquarks are the only fundamental particles that interact through all four of the fundamental forces. An important property of quarks is called confinement, which states that individual quarks are not seen because they are always confined inside subatomic particles called hadrons (e.g., protons and neutrons); an exception is the top quark, which decays so quickly that it does not hadronize, and can therefore be observed more directly via its decay products. Confinement began as an experimental observation, and is expected to follow from the modern theory of strong interactions, called quantum chromodynamics.

Related Stories
 


Matter & Energy News

January 26, 2026

Researchers have demonstrated that quantum entanglement can link atoms across space to improve measurement accuracy. By splitting an entangled group of atoms into separate clouds, they were able to measure electromagnetic fields more precisely than ...
Researchers have developed a technique that allows them to carve complex three dimensional nanodevices directly from single crystals. To demonstrate its power, they sculpted microscopic helices from a magnetic material and found that the structures ...
A new building material developed by engineers at Worcester Polytechnic Institute could change how the world builds. Made using an enzyme that turns carbon dioxide into solid minerals, the material cures in hours and locks away carbon instead of ...
Physicists have unveiled a new way to simulate a mysterious form of dark matter that can collide with itself but not with normal matter. This self-interacting dark matter may trigger a dramatic collapse inside dark matter halos, heating and ...
As global energy demand surges—driven by AI-hungry data centers, advanced manufacturing, and electrified transportation—researchers at the National Renewable Energy Laboratory have unveiled a breakthrough that could help squeeze far more power ...
Solid-state batteries could store more energy and charge faster than today’s batteries, but they tend to crack and fail over time. Stanford researchers found that a nanoscale silver treatment can greatly strengthen the battery’s ceramic core. ...
Engineers have created a device that generates incredibly tiny, earthquake-like vibrations on a microchip—and it could transform future electronics. Using a new kind of “phonon laser,” the team ...
Foams were once thought to behave like glass, with bubbles frozen in place at the microscopic level. But new simulations reveal that foam bubbles are always shifting, even while the foam keeps its overall shape. Remarkably, this restless motion ...
Florida State University scientists have engineered a new crystal that forces atomic magnets to swirl into complex, repeating patterns. The effect comes from mixing two nearly identical compounds whose mismatched structures create magnetic tension ...
Scientists in South Korea have discovered a way to make all-solid-state batteries safer and more powerful using inexpensive materials. Instead of adding costly metals, they redesigned the battery’s internal structure to help lithium ions move ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...

Latest Headlines

updated 12:56 pm ET