Featured Research

from universities, journals, and other organizations

Researchers Probe New Depths In Plant Communications

Date:
January 5, 1999
Source:
University Of California, Davis
Summary:
UC Davis biologists report the discovery of an important element in the complicated internal communication and transportation systems of plants: a previously unknown "movement protein" that carries information-bearing RNA from stems and leaves to faraway roots and flowers.

UC Davis biologists report the discovery of an important element in the complicated internal communication and transportation systems of plants: a previously unknown "movement protein" that carries information-bearing RNA from stems and leaves to faraway roots and flowers.

Related Articles


The findings should provide basic insight into the evolutionary processes underlying complex plants and could lead to better defenses against crop diseases.

The Davis team, led by professor of plant biology William Lucas, is one of only a few worldwide that are unraveling how plants transport many important internal cargoes, including genetic messages that govern growth and flowering.

"This new study is very important," says Richard Jorgensen, an associate professor of plant sciences at the University of Arizona and also an expert in the field. "What they've identified is probably a component in a radically new system for communication between cells and between organs of the plant."

The current picture of the plant's transportation, or phloem, system looks something like a bustling subway. The tube- shaped sieve elements of the phloem are the subway lines, the companion cells of the sieve elements are the stations, and connecting tunnels called plasmodesmata allow cargoes to move from the stations into the subway lines.

In the Jan. 1 issue of the journal Science, the UC Davis study introduces the new factor, the movement protein.

In the cells of leaves and stems, the movement protein binds to an informative segment of genetic code called messenger RNA (mRNA). Like a subway ticket, the movement protein lets the mRNA enter the plasmodesmal tunnel to the subway line, or phloem translocation stream. Once in the subway line, the complex of movement protein and mRNA travels very rapidly to distant stations located in roots and flowers.

At its destination, the report suggests, the messenger RNA probably influences the level of some other protein. That level conveys information to local tissues about, for instance, the overall physical condition of the plant, the season of the year or the presence of an invading pathogen.

"The large, structurally complex plants we see today evolved an elaborate vascular system to carry water and the products of photosynthesis all over the organism," says Lucas.

"A parallel communication system also had to evolve, to permit such large plants to integrate events happening in distant organs, such as sugar production in leaves, reproduction in flowers, and nutrient acquisition in roots.

"Our finding supports the hypothesis that a critical element of this communication system is the transport of RNA molecules through the plant's vascular system to those distant tissues."

The new protein was named CmPP16 because it is a phloem protein, 16 kilodaltons in size, first found in the Halloween pumpkin, Cucurbita maxima.

Another interesting feature of CmPP16 is that its genetic sequence and its behavior are very much like those of a movement protein used by viruses.

"Plant viruses appear to have acquired the ability to use plant communication pathways to infect an entire plant," Lucas says. "The parallels between viral movement proteins and CmPP16 provide the first strong evidence that viruses may have acquired that ability by stealing it from plant genes."

The gene that makes the CmPP16 protein in pumpkins is also found in a wide range of other crop plants, says Lucas, and it probably functions in the same way. The Davis researchers are now trying to backtrack through plant evolution to learn when the gene first began to assist whole-plant communication.

The lead authors of the Science paper are three postdoctoral researchers in the Lucas lab: Beatriz Xoconostle-Cazares, Yu Xiang and Roberto Ruiz-Medrano. Their co-authors are three other UC Davis postdoctoral researchers -- Hong-Li Wang, Jan Monzer and Byung-Chun Yoo -- Lucas and staff research associate K.C. McFarland. Vincent R. Franceschi, professor of plant biology at Washington State University, is also an author.

The research was funded by the U.S. Department of Energy and the National Science Foundation. Ruiz-Medrano received some funding from CONACyT, the Mexican national council on science and technology.


Story Source:

The above story is based on materials provided by University Of California, Davis. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Davis. "Researchers Probe New Depths In Plant Communications." ScienceDaily. ScienceDaily, 5 January 1999. <www.sciencedaily.com/releases/1999/01/990105075808.htm>.
University Of California, Davis. (1999, January 5). Researchers Probe New Depths In Plant Communications. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/1999/01/990105075808.htm
University Of California, Davis. "Researchers Probe New Depths In Plant Communications." ScienceDaily. www.sciencedaily.com/releases/1999/01/990105075808.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins