Featured Research

from universities, journals, and other organizations

Dartmouth Research Offers Clues To New Anti-Microbial Treatments

Date:
January 14, 2000
Source:
Dartmouth Medical School
Summary:
The race to stay ahead of bacteria that develop resistance to frequently used antibiotics may be paying off. Dartmouth Medical School (DMS) researchers have discovered how to block a pathway many bacteria use to infect organisms.

HANOVER, NH -- The race to stay ahead of bacteria that develop resistance to frequently used antibiotics may be paying off. Dartmouth Medical School (DMS) researchers have discovered how to block a pathway many bacteria use to infect organisms.

Related Articles


Dr. Ronald Taylor, professor of microbiology, and Christian LaPointe, a graduate student, report a way to inhibit the enzyme that many types of bacteria need to infect and damage a variety of hosts, from plants to humans. Their work, reported in the January 14 issue of the Journal of Biological Chemistry, could provide a foundation for developing new agents to combat bacterial infections.

"In this age of antibiotics, people have come to expect a ready cure for the majority of common ailments caused by infectious microbes, from acne to ear aches. However, the microbes have been fighting back, and increasing numbers are becoming resistant to all available antibiotics at an alarming rate," says Taylor.

"These recent findings may advance screening for additional compounds that can be developed into novel therapeutic or prophylactic antimicrobial agents, at a time when many of the mainstay antibiotics are no longer useful due to the development of resistant bacteria."

Taylor's laboratory has delineated mechanisms for a common bacterial enzyme or protease that bacteria need to secrete their toxins or other virulent factors that cause damage. Treating bacteria with compounds to prevent protease function could augment therapies against a number of infectious diseases. For example protease inhibitors have been used with success to inhibit replication of the Human Immunodeficiency Virus (HIV-1) in AIDS.

Their work, says Taylor, might be a useful adjunct for cystic fibrosis treatment by inhibiting the growth of Pseudomonas that colonizes patients' lungs and is notable for resistance to antibiotics. It might lead to particularly useful approaches against infections such as meningitis by providing a way to clear bacteria without the potential complication of toxic shock that is associated with conventional treatments.

The researchers have identified the active site and biochemical pathway for type four prepilin peptidase (TFPP), a protease that cleaves the precursor form of pilin and related proteins prior to their secretion by bacteria. Pilins are protein building block subunits of hair-like fibers called pili that protrude from the bacterial surface and allow pathogenic bacteria to colonize on or in their hosts. Related proteins, termed pilin-like proteins, form channels across the bacterial membrane to facilitate the movement of toxins or other virulent factors the bacteria produce. If the TFPP function is absent, neither the pili nor the secretion apparatus can form and the pathogenic bacteria cannot spread or cause disease.

The Dartmouth researchers developed an assay to monitor TFPP activity in the laboratory and used the assay to identify a compound that inhibited the TFPP activity. They found that the compound worked the way their genetic analysis had predicted and demonstrated that the TFPPs represent a novel family, unlike other proteases.

Taylor and his colleagues tested the activity of the TFPP in the Vibrio cholerae bacterium, which the laboratory studies. The organism causes cholera, a severe life-threatening diarrheal disease spread by ingestion of contaminated water or food. Cholera is not common in the United States due to efficient sewage treatment, but it is a large problem in many areas of the world. The recent findings could also lead to therapies for use in conjunction with the primary form of cholera treatment that relies heavily on rehydrating the patient.

V. cholerae bacteria secrete two major virulent factors that are both needed to cause disease. One is cholera toxin (CT), which enters intestinal cells of an infected individual, causing them to lose copious amounts of fluid and electrolytes that leads to rapid dehydration serious enough to be fatal. The second factor is the toxin coregulated pilus (TCP) that allows the bacterium to colonize the human intestine. Without colonization, toxin production and delivery to the host cannot occur.

Each factor utilizes a different member of the TFPPs during transport outside the bacterium and both of these corresponding TFPPs, termed VcpD for toxin secretion and TcpJ for pilin secretion, were first discovered in the Taylor laboratory. These two TFPPs were the model molecules used to work out the mechanisms of action and inhibition for the TFPPs that have been identified in at least 50 bacterial species.

The research was funded by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "Dartmouth Research Offers Clues To New Anti-Microbial Treatments." ScienceDaily. ScienceDaily, 14 January 2000. <www.sciencedaily.com/releases/2000/01/000113233426.htm>.
Dartmouth Medical School. (2000, January 14). Dartmouth Research Offers Clues To New Anti-Microbial Treatments. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2000/01/000113233426.htm
Dartmouth Medical School. "Dartmouth Research Offers Clues To New Anti-Microbial Treatments." ScienceDaily. www.sciencedaily.com/releases/2000/01/000113233426.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins