Featured Research

from universities, journals, and other organizations

Dartmouth Research Offers Clues To New Anti-Microbial Treatments

Date:
January 14, 2000
Source:
Dartmouth Medical School
Summary:
The race to stay ahead of bacteria that develop resistance to frequently used antibiotics may be paying off. Dartmouth Medical School (DMS) researchers have discovered how to block a pathway many bacteria use to infect organisms.

HANOVER, NH -- The race to stay ahead of bacteria that develop resistance to frequently used antibiotics may be paying off. Dartmouth Medical School (DMS) researchers have discovered how to block a pathway many bacteria use to infect organisms.

Related Articles


Dr. Ronald Taylor, professor of microbiology, and Christian LaPointe, a graduate student, report a way to inhibit the enzyme that many types of bacteria need to infect and damage a variety of hosts, from plants to humans. Their work, reported in the January 14 issue of the Journal of Biological Chemistry, could provide a foundation for developing new agents to combat bacterial infections.

"In this age of antibiotics, people have come to expect a ready cure for the majority of common ailments caused by infectious microbes, from acne to ear aches. However, the microbes have been fighting back, and increasing numbers are becoming resistant to all available antibiotics at an alarming rate," says Taylor.

"These recent findings may advance screening for additional compounds that can be developed into novel therapeutic or prophylactic antimicrobial agents, at a time when many of the mainstay antibiotics are no longer useful due to the development of resistant bacteria."

Taylor's laboratory has delineated mechanisms for a common bacterial enzyme or protease that bacteria need to secrete their toxins or other virulent factors that cause damage. Treating bacteria with compounds to prevent protease function could augment therapies against a number of infectious diseases. For example protease inhibitors have been used with success to inhibit replication of the Human Immunodeficiency Virus (HIV-1) in AIDS.

Their work, says Taylor, might be a useful adjunct for cystic fibrosis treatment by inhibiting the growth of Pseudomonas that colonizes patients' lungs and is notable for resistance to antibiotics. It might lead to particularly useful approaches against infections such as meningitis by providing a way to clear bacteria without the potential complication of toxic shock that is associated with conventional treatments.

The researchers have identified the active site and biochemical pathway for type four prepilin peptidase (TFPP), a protease that cleaves the precursor form of pilin and related proteins prior to their secretion by bacteria. Pilins are protein building block subunits of hair-like fibers called pili that protrude from the bacterial surface and allow pathogenic bacteria to colonize on or in their hosts. Related proteins, termed pilin-like proteins, form channels across the bacterial membrane to facilitate the movement of toxins or other virulent factors the bacteria produce. If the TFPP function is absent, neither the pili nor the secretion apparatus can form and the pathogenic bacteria cannot spread or cause disease.

The Dartmouth researchers developed an assay to monitor TFPP activity in the laboratory and used the assay to identify a compound that inhibited the TFPP activity. They found that the compound worked the way their genetic analysis had predicted and demonstrated that the TFPPs represent a novel family, unlike other proteases.

Taylor and his colleagues tested the activity of the TFPP in the Vibrio cholerae bacterium, which the laboratory studies. The organism causes cholera, a severe life-threatening diarrheal disease spread by ingestion of contaminated water or food. Cholera is not common in the United States due to efficient sewage treatment, but it is a large problem in many areas of the world. The recent findings could also lead to therapies for use in conjunction with the primary form of cholera treatment that relies heavily on rehydrating the patient.

V. cholerae bacteria secrete two major virulent factors that are both needed to cause disease. One is cholera toxin (CT), which enters intestinal cells of an infected individual, causing them to lose copious amounts of fluid and electrolytes that leads to rapid dehydration serious enough to be fatal. The second factor is the toxin coregulated pilus (TCP) that allows the bacterium to colonize the human intestine. Without colonization, toxin production and delivery to the host cannot occur.

Each factor utilizes a different member of the TFPPs during transport outside the bacterium and both of these corresponding TFPPs, termed VcpD for toxin secretion and TcpJ for pilin secretion, were first discovered in the Taylor laboratory. These two TFPPs were the model molecules used to work out the mechanisms of action and inhibition for the TFPPs that have been identified in at least 50 bacterial species.

The research was funded by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Dartmouth Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth Medical School. "Dartmouth Research Offers Clues To New Anti-Microbial Treatments." ScienceDaily. ScienceDaily, 14 January 2000. <www.sciencedaily.com/releases/2000/01/000113233426.htm>.
Dartmouth Medical School. (2000, January 14). Dartmouth Research Offers Clues To New Anti-Microbial Treatments. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2000/01/000113233426.htm
Dartmouth Medical School. "Dartmouth Research Offers Clues To New Anti-Microbial Treatments." ScienceDaily. www.sciencedaily.com/releases/2000/01/000113233426.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Buzz60 (Nov. 24, 2014) An aquarium captures a first-of-its kind video of a notoriously camera-shy fish that’s also not so camera-friendly. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Red Panda Cubs Explore the Bratislava Zoo

Red Panda Cubs Explore the Bratislava Zoo

AFP (Nov. 24, 2014) Four-month old Red Panda twins Pim and Pam still rely on their mother for breast milk at the Bratislava Zoo in Slovakia, but the precocious cubs have begun to branch out to solid foods, as well. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins