Featured Research

from universities, journals, and other organizations

Scientists Map First Structure In Important Family Of Proteins

Date:
August 14, 2000
Source:
University Of Washington
Summary:
An international team including scientists from the University of Washington has mapped the first crystal structure of a G protein-coupled receptor (GPCR), one of a family of proteins that are crucial to everything from vision to the development of the human embryo, according to a paper published in the Aug. 4 issue of Science.

An international team including scientists from the University of Washington has mapped the first crystal structure of a G protein-coupled receptor (GPCR), one of a family of proteins that are crucial to everything from vision to the development of the human embryo, according to a paper published in the Aug. 4 issue of Science.

A model of the protein is featured on the cover of the journal, which is published by the American Association for the Advancement of Science.

The particular GPCR that the scientists mapped is rhodopsin, a light receptor protein that resides inside cell membranes of retinal rod cells that carry out the first step in vision. It converts an environmental signal -- light -- into a biological action -- a nerve signal to the brain. The process is called phototransduction. But GPCRs do more than this. They are one of the largest families of proteins encoded in the human genome, representing roughly 3 percent of the genome.

Work based on this model "should have far-reaching implications," write Henry R. Bourne and Elaine C. Meng of the University of California, San Francisco, in an article accompanying the paper. "New insights gained will help us to understand how GPCRs transduce the signals that regulate embryonic development and control the heart, blood vessels, synaptic traffic in the brain and, indeed, the functions of virtually every eukaryotic cell."

While genomes have been rightfully getting a lot of attention lately, the proteins that the genomes produce are what actually function inside the cell. For example, GPCRs are involved in the receptors found in the tongue -- responsible for taste -- and in the nose -- responsible for detecting odors. Other GPCRs are involved in the regulation of the heartbeat. They are even found in the brain, in the opiate receptors that bind someone to a life of drug addiction. In other words, GPCRs participate in almost every physiological process. "Because the underlying structure is similar, understanding one of these G protein-coupled receptors is important to understanding all of them. This first structure provides computational models that will guide us in future experiments to decipher how those other receptors work," said the paper's lead author, Dr. Krzystof Palczewski, Bishop professor of ophthalmology in the University of Washington School of Medicine. Dr. Tetsuji Okada, a postdoctoral fellow in Palczewski's laboratory, initiated the project, working in darkness to crystallize the protein from bovine rod cells. The work had to be done in darkness because if the protein was exposed to light, it would change, just as it does in the human eye when exposed to light.

Other critical collaborators on this project include Dr. Ronald E. Stenkamp, UW associate professor of biological structure and Dr. Masashi Miyano of the Structural Biophysics Laboratory, Riken Harima Institute, in Riken, Japan. Both researchers and their laboratories were involved in sorting through 50 gigabytes of data to diagram the position of 348 amino acids in the crystal's structure.

The title of the article is "Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor." Besides Palczewski, Stenkamp, Okada and Miyano, the authors include Takashi Kumasaka, Tetsuya Hori, Hiroyuki Motoshima, Masaki Yamamoto, (all of the Riken Institute) and Craig A. Behnke, Brian A. Fox, Isolde Le Trong and David C. Teller (all of the UW Biomolecular Structure Center.)

Understanding the protein structure should help scientists who are trying to develop pharmacological treatments for many disorders, ranging from vision problems to drug addiction and depression, Palczewski says. For example, one well-known GPCR is a receptor responding to serotonin, which appears to play a significant role in mood.

GPCRs are one of the main targets of pharmacological interventions for many conditions. The paper's authors hope that structural information about GPCRs may lead to significant advances in drug design, perhaps by better pinpointing ligands that can block or accelerate cell function. Besides being the first GPCR to be mapped, rhodopsin is now one of only about 10 membrane proteins that have been mapped to such detail. That's because membrane proteins are not easily crystallized. Most proteins that have been analyzed so far are soluble, and reside inside a membrane.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Scientists Map First Structure In Important Family Of Proteins." ScienceDaily. ScienceDaily, 14 August 2000. <www.sciencedaily.com/releases/2000/08/000807063513.htm>.
University Of Washington. (2000, August 14). Scientists Map First Structure In Important Family Of Proteins. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2000/08/000807063513.htm
University Of Washington. "Scientists Map First Structure In Important Family Of Proteins." ScienceDaily. www.sciencedaily.com/releases/2000/08/000807063513.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins