Featured Research

from universities, journals, and other organizations

Devastating Parasitic Weed May Be Felled By Toxin Borrowed From Flies

Date:
March 31, 2004
Source:
Virginia Tech
Summary:
The parasitic weed, broomrape, attaches to the root of such vegetable crops as tomato, potato, beans, and sunflowers. With no need for leaves of its own, it produces only a floral shoot above ground. Meanwhile, its host is barely able to survive, much less be productive.

The parasitic weed, broomrape, attaches to the root of such vegetable crops as tomato, potato, beans, and sunflowers. With no need for leaves of its own, it produces only a floral shoot above ground. Meanwhile, its host is barely able to survive, much less be productive.

Now, the defense mechanism of another pest – the fly – may provide a weapon against parasitic weeds.

Researchers from Virginia Tech in the United States and the Agricultural Research Organization (ARO) of Israel will likely create a buzz of fascination when they present their results at the 227th national meeting of the American Chemical Society in Anaheim, Calif., March 28-April 1.

Broomrape is very disruptive throughout the Middle East and Africa, as well as in some parts of Europe. Plant breeders have been trying for decades to breed crops that will resist the weed. Genetic engineering to create resistant crops is the latest strategy.

Egyptian broomrape, or Orobanche aegyptiaca, was certainly a logical target for the efforts of Noureddine Hamamouch of Morocco, a doctoral student in plant pathology, physiology, and weed science (PPWS) at Virginia Tech. And genetic engineering was the logical strategy. But the toxin he decided to experiment with, an antibacterial peptide that is part of the defense arsenal of the flesh fly (Sarcophaga peregrina), was a matter of luck, says PPWS professor James Westwood.

Westwood's colleague, Radi Aly, of the weed science department at Newe Ya'ar Research Center of ARO had been working with the fly peptide, sarcotoxin as part of another, unrelated project. "He had it on hand and just tried it to see what would happen."

The model plant for the research is tobacco, which Virginia Tech researchers have used for other transgenic projects. At around the time Aly realized he had a potential toxin in hand, Westwood's group had just identified a gene promoter that switched on specifically in response to the parasite. The two groups joined forces to maximize the impact of their strategy.

Hamamouch and Aly linked the parasite-induced promoter to the sarcotoxin gene and introduced the final product into the tobacco genome using Agrobacterium-mediated transformation. The introduced gene was thus silent in the healthy tobacco plant but turned on when it sensed an invading parasite.

But would Egyptian broomrape be repelled by this souped-up off shoot of an antibacterial peptide from a flesh fly? Yes.

But the results are somewhat uneven. In some instances, the broomrape planted with the treated tobacco perished. In other instances, it faltered to different degrees, while the host plant produced better than untreated tobacco that was also sharing space with broomrape.

The researchers have also demonstrated that broomrape does suck up macromolecules far bigger than the sarcotoxin peptide along with water and nutrients from the host. "We suspect the toxin moves into the parasite and disrupts its growth," says Westwood.

The goal now is to determine how the new peptide works and how to make it more effective. "We think we need higher levels of expression to get complete resistance. We think that the peptide degrades rapidly, so we need to stabilize it so it lasts longer."

The effectiveness of a fly-defense antibacterial peptide is not entirely serendipity. Westwood explains that flies must have defense systems to protect themselves from microbes – considering their life styles. "They carry defenses with a broad spectrum of activity. Sarcotoxin attacks the membranes of many different bacteria, but is relatively safe for higher organisms. It is interesting that it also is effective against parasitic plants and we want to understand the mechanism."

Why doesn't it also attack the host? The researchers demonstrated that the toxin is produced only where the parasite attacks the host. "It is produced at the injury site in great numbers and the parasite is like a vacuum cleaner – taking in as much as it can. So it accumulates more of the peptide than remains with the host."

The paper, "Engineering crop resistance to parasitic weeds (AGFD 28)" will be presented by Westwood at 9:20 a.m. Monday, March 29, as part of the symposium on natural products for pest management at 8:15 a.m. to 12:30 p.m., in the Hilton's Pacific Ballroom B. Authors are Hamamouch, Aly, Virginia Tech PPWS professor Carole L. Cramer, and Westwood.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Devastating Parasitic Weed May Be Felled By Toxin Borrowed From Flies." ScienceDaily. ScienceDaily, 31 March 2004. <www.sciencedaily.com/releases/2004/03/040330091140.htm>.
Virginia Tech. (2004, March 31). Devastating Parasitic Weed May Be Felled By Toxin Borrowed From Flies. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2004/03/040330091140.htm
Virginia Tech. "Devastating Parasitic Weed May Be Felled By Toxin Borrowed From Flies." ScienceDaily. www.sciencedaily.com/releases/2004/03/040330091140.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Raw: Three Rare White Tiger Cubs Debut at Zoo

Raw: Three Rare White Tiger Cubs Debut at Zoo

AP (Apr. 16, 2014) The Buenos Aires Zoo debuted a trio of rare white Bengal tiger cubs on Wednesday. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins