Featured Research

from universities, journals, and other organizations

Researchers Create Functioning Artificial Proteins Using Nature's Rules

Date:
September 22, 2005
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
By examining how proteins have evolved, UT Southwestern Medical Center researchers have discovered a set of simple "rules" that nature appears to use to design proteins, rules the scientists have now employed to create artificial proteins that look and function just like their natural counterparts.

By examining how proteins have evolved, UT Southwestern researchers have discovered a set of simple “rules” that nature appears to use to design proteins. Researchers in pharmacology published their findings in the journal Nature, including (from left) lead authors Dr. William Russ and Michael Socolich, and senior author Dr. Rama Ranganathan.
Credit: Image courtesy of University Of Texas Southwestern Medical Center At Dallas

DALLAS - Sept. 21, 2005 - By examining how proteins have evolved, UT Southwestern Medical Center researchers have discovered a set of simple "rules" that nature appears to use to design proteins, rules the scientists have now employed to create artificial proteins that look and function just like their natural counterparts.

In two papers appearing in the Sept. 22 issue of the journal Nature, Dr. Rama Ranganathan, associate professor of pharmacology, and his colleagues detail a new method for creating artificial proteins based only on information they derived from analyzing certain characteristics that individual natural proteins have in common with each other.

"The goal of our research was not to find another way to make artificial proteins in the lab, but to discover the rules that nature and evolution have used to design proteins," Dr. Ranganathan said. "The rules we have extracted from the evolutionary record of proteins contain a substantial fraction of the information required to rebuild modern-day proteins. We're building solutions so close that, at least in a test tube, we can't tell them apart from natural proteins."

Dr. Ranganathan said there could still be many small differences between the artificial proteins and the natural ones, and further testing would need to be done to determine whether they work within an actual organism.

"Our work suggests that modern-day proteins have likely inherited much of the information specifying their structure and basic aspects of function from their ancestors, but it is also possible that they have been fine-tuned over time to have their own idiosyncratic features in specific cells," said Dr. Ranganathan, who also is a Howard Hughes Medical Institute (HHMI) investigator. "We are suggesting that the functions proteins have today are the result of fine-tuninga basic ancestral template that we have now figured out."

Proteins, which carry out the body's life functions, are composed of molecules called amino acids, which are strung together in long chains. These chains loop about each other, or fold, in a variety of ways. Their specific three-dimensional shapes help proteins to perform their biological functions.

For decades, scientists have known that the sequence of amino acids that make up a protein determines the protein's structure and its function. What has not been known is what information contained within that sequence produces the proper structure.

All proteins are made up of 20 specific amino acids. Even for a small protein made up of 100 amino acids, the number of possible combinations of amino acids is staggering, many times more than the number of atoms in the known universe.

"How did nature devise the right sequences that resulted in functioning proteins? Somehow, it found a way," Dr. Ranganathan said. "One implication of our work is that the evolutionary protein-design process may not be as complex as was previously thought."

Earlier research has shown that for a given group of related proteins, or protein family, all family members share common structures and functions. By examining more than 100 members of one protein family, the UT Southwestern group found that the proteins share a specific pattern of amino acid selection rules that are unique to that family.

"What we have found is the body of information that is fundamentally ancient within each protein family, and that information is enough to specify the structure of modern-day proteins," Dr. Ranganathan said.

He and his team tested their newly discovered "rules" gleaned from the evolutionary record by feeding them into a computer program they developed. The program generated sequences of amino acids, which the researchers then "back-translated" to create artificial genes. Once inserted into laboratory bacteria, the genes produced artificial proteins as predicted.

"We found that when isolated, our artificial proteins exhibit the same range of structure and function that is exhibited by the starting set of natural proteins," Dr. Ranganathan said. "The real test will be to put them back into a living organism such as yeast or fruit flies and see how they compete with natural proteins in an evolutionary sense."

Other UT Southwestern researchers involved in the work are lead authors Michael Socolich, HHMI research specialist, and Dr. William Russ, assistant instructor of pharmacology; Steve Lockless, medical student; Prashant Mishra, Medical Scientist Training Program student; Heather Lee, HHMI technician; and Dr. Kevin Gardner, associate professor of biochemistry and pharmacology. Researchers from the Massachusetts Institute of Technology also participated.

The research was supported by HHMI, the Welch Foundation, the National Institutes of Health, the Keck Foundation and the Mallinckrodt Foundation Scholars Program.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Create Functioning Artificial Proteins Using Nature's Rules." ScienceDaily. ScienceDaily, 22 September 2005. <www.sciencedaily.com/releases/2005/09/050922012900.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2005, September 22). Researchers Create Functioning Artificial Proteins Using Nature's Rules. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2005/09/050922012900.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Create Functioning Artificial Proteins Using Nature's Rules." ScienceDaily. www.sciencedaily.com/releases/2005/09/050922012900.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins