Featured Research

from universities, journals, and other organizations

Researchers Identify Process That Enables Access To Genes

Date:
May 18, 2007
Source:
Rockefeller University
Summary:
It turns out there's more than one way to skin a gene. New research from Rockefeller University suggests that two closely related DNA unpackaging mechanisms may not work the way scientists thought. Access to a gene requires a host of proteins to work in tandem to pry open DNA's protective chromatin shell, formed by complexes of DNA and special packaging proteins called histones.

Underneath ubiquitylation. The nucleus (blue) of a mutant yeast cell appears to be deformed due to the loss of a process, ubiquitylation, that underlies the unpackaging of DNA.
Credit: Image courtesy of Rockefeller University

It turns out there’s more than one way to skin a gene. New research from Rockefeller University suggests that two closely related DNA unpackaging mechanisms may not work the way scientists thought.

Access to a gene requires a host of proteins to work in tandem to pry open DNA’s protective chromatin shell, formed by complexes of DNA and special packaging proteins called histones. Research in David Allis’s Laboratory of Chromatin Biology and Epigenetics focuses on understanding chemical modifications to the threadlike protein “tails” that hang from histones. But two of these gene-activating modifications, which add chemical groups called methyl and ubiquitin to the amino acid lysine at specific locations on neighboring histones, are poorly understood. At least, they were.

Early research by Allis’s lab established that these two modifications are functionally related. Experiments showed that mutations in yeast that abolished ubiquitylation also led to loss of methylation. Because ubiquitylation takes place at lysine 119 on one type of histone, called H2B, and methylation takes place at lysine 4 on another histone, H3, the finding suggested that modifications on different histones communicate with each other in a type of signaling pathway. But questions still remained about the function of each of these modifications in transcription activation.

Jason Tanny, a postdoc in Allis’s laboratory, and his colleagues answer some of these questions in a cover article in the April issue of Genes and Development. Tanny, first author of the report, set out to determine whether ubiquitylation and methylation are functionally equivalent.

Using fission yeast as a model, Tanny created a mutation in histone H2B that knocked out its ubiquitylation site on lysine 119, and found that methylation on H3 was also impaired, confirming the relationship between the two modifications. He also found that the cells with defects in ubiquitylation became unhealthy: The mutant yeast cells grew more slowly than their normal sister cells.

“If the cells are sick, it would be because you are knocking out this pathway that leads from ubiquitylation to methylation,” says Tanny. “So we thought that knocking out methylation would also make the cells sick.” But when Tanny knocked out a gene called set1, which abolished methylation on H3 without affecting ubiquitylation on H2B, normal cell growth was unimpaired. So H2B ubiquitylation was functioning “upstream” of lysine H3 methylation. Tanny reasoned that ubiquitylation was operating in a separate pathway and affecting cell growth.

Tanny used a chromosome immunoprecipitation assay to determine where RNA polymerase — the large protein machine that copies DNA into RNA — is located in these genes. He found that RNA polymerase had no problem getting to the gene promoter — the first step in transcription — but there were problems downstream, at the body of the gene.

“The real effect of the ubiquitylation mutation on transcription is on the ability of RNA polymerase to get through the gene, rather than the ability of RNA polymerase to get to the gene in the first place,” Tanny says. “This suggests that the reason we saw gene expression defects in these mutants is because there is a transcription elongation defect at specific genes.”

Nucleosomes represent a barrier to transcription — test tube studies have shown that nucleosomes need to be disrupted in some way for RNA polymerase to get through to the DNA. Scientists think that transcription progresses as the nucleosomes are taken apart and then put back together after RNA polymerase goes through. Tanny proposes that ubiquitylation directly affects nucleosome assembly as RNA polymerase goes through.

“Because these modifications are so conserved from yeast to humans, this is going to be important for understanding mechanisms for how nucleosome structures are altered during transcription,” Tanny says.

“Jason’s work demonstrates that histone ubiquitylation plays a role in RNA polymerase elongation when genes exist in a chromatin landscape, a function that can be separate from other chromatin ‘on’ marks that more closely function with transcription initiation,” says Allis, who is the Joy and Jack Fishman Professor. “Understanding how this happens mechanistically will likely be one of the next exciting chapters in protein ubiquitylation.”

Article: Genes and Development 21(7): 835-847 (April 1, 2007)


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Researchers Identify Process That Enables Access To Genes." ScienceDaily. ScienceDaily, 18 May 2007. <www.sciencedaily.com/releases/2007/05/070517122207.htm>.
Rockefeller University. (2007, May 18). Researchers Identify Process That Enables Access To Genes. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2007/05/070517122207.htm
Rockefeller University. "Researchers Identify Process That Enables Access To Genes." ScienceDaily. www.sciencedaily.com/releases/2007/05/070517122207.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
California Drought Stings Honeybees, Beekeepers

California Drought Stings Honeybees, Beekeepers

AP (Aug. 21, 2014) — California's record drought is hurting honey supplies and raising prices for consumers. The lack of rainfall means fewer crops and wildflowers that provide the nectar bees need to make honey. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins