Featured Research

from universities, journals, and other organizations

Physicists Demonstrate Precise Manipulation Of DNA-Drug Interactions

Date:
May 23, 2008
Source:
Northeastern University
Summary:
Being able to target the genetic code to develop an effective treatment of a disease is the ultimate goal for many scientists. Focusing on how the DNA interacts with a potential drug is an important element of DNA therapy research. Scientists have now developed a method using optical tweezers to better understand how those interactions occur.

Model DNA binding ligands such as the "threading intercalators" shown above can be uniquely characterized with this newly developed single molecule method, and the results may aid in the development of novel anti-cancer drugs.
Credit: Mark Williams, Northeastern University

Being able to target the genetic code to develop an effective treatment of a disease is the ultimate goal for many scientists. Focusing on how the DNA interacts with a potential drug is an important element of DNA therapy research. Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts and Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

Related Articles


This research, performed primarily by graduate student Thaya Paramanathan, published in a recent edition of the Journal of the American Chemical Society (vol. 130, p. 3752), has the potential to uncover crucial information about how to target DNA in order to develop therapies for chronic diseases such as cancer and AIDS.

DNA, the structure that holds the human genetic code, is composed of nucleic acid bases pairing up and bonding together to form a double helix. Intercalators are molecules that bind between DNA base pairs and have been found to inhibit cell replication, a highly desired quality for potential drug targets. Novel “threading” intercalators have recently been developed to optimize DNA binding. Due to the strength of these bonds and the slow rate of binding, however, it is hard to study the interactions of these intercalators using normal methods, resulting in a limited availability of data and research options.

To address these issues, Mark Williams and his team stretched single DNA molecules using optical tweezers to better control the interactions between the DNA and the potential drug target molecules.

“By studying this threading mechanism on a single DNA molecule, we were able to directly measure the physical characteristics of the interactions between the DNA and potential DNA binding drugs,” said Williams.

The optical tweezers grab the ends of the DNA strand and stretch it out, allowing for the DNA strands to separate more quickly. When the DNA bases separate, the drug molecule, which is dumbbell-shaped and binds with the DNA in the center of the dumb-bell, slides in between the base pairs. When the bond re-forms between the base pairs, the potential drug molecule remains stuck between the DNA strands that form the double helix, and therefore it has formed a very strong bond.

The observations lead to the understanding of how and under what circumstances these bonds occur, which can help in the development of drug therapies that would inhibit or prevent mutated cells from replicating.

“The ability to precisely quantify and characterize the physical mechanism of this threading intercalation should help to fine-tune the desired DNA binding properties,” added Williams.


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "Physicists Demonstrate Precise Manipulation Of DNA-Drug Interactions." ScienceDaily. ScienceDaily, 23 May 2008. <www.sciencedaily.com/releases/2008/05/080520162514.htm>.
Northeastern University. (2008, May 23). Physicists Demonstrate Precise Manipulation Of DNA-Drug Interactions. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/05/080520162514.htm
Northeastern University. "Physicists Demonstrate Precise Manipulation Of DNA-Drug Interactions." ScienceDaily. www.sciencedaily.com/releases/2008/05/080520162514.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Americans Drink More in the Winter

Americans Drink More in the Winter

Buzz60 (Dec. 22, 2014) The BACtrack breathalyzer app analyzed Americans' blood alcohol content and found out a whole lot of interesting things about their drinking habits. Mara Montalbano (@maramontalbano) has more. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins