Featured Research

from universities, journals, and other organizations

Researchers Unravel Neuronal Circuitry Keeping Metabolism And Fat Storage In Check

Date:
April 16, 2009
Source:
The Babraham Institute
Summary:
Scientists have unravelled novel aspects of the biochemical signalling pathways that enable the tiny roundworm, C. elegans, to modify its metabolism in response to food using a neurochemical signaling system that has parallels in mammals.

Scientists at the Babraham Institute, the MRC Laboratory of Molecular Biology and the University of Cambridge have unravelled novel aspects of the biochemical signalling pathways that enable the tiny roundworm, C. elegans, to modify its metabolism in response to food using a neurochemical signalling system that has parallels in mammals.

To survive and reproduce, animals must be able to modify their food-seeking behaviour and metabolism in response to food availability in their environment, migrating to more favourable locations where food is more plentiful.Although C. elegans is some evolutionary distance from humans, numerous biological processes have been conserved in animals and this tiny transparent worm is proving a useful tool to study the genes regulating fat storage and energy; genes regulating fat metabolism in C. elegans have mammalian counterparts also involved with fat storage. Further C. elegans’ simpler nervous system of only 302 neurons facilitates analysis at the molecular and neural levels compared to higher animals. Special sensory neurons detect food availability and if food is absent or very poor the worm relocates to a more fruitful environment.

The findings, reported today in the journal Cell Metabolism, provide new insights into the ways animals modify their foraging behaviour in response to food availability, thereby enabling them to regulate their energy expenditure, appetite, fat storage and thus survive when food is scarce. The authors reveal that disrupting neuropeptide signalling - knocking out a gene called flp-18 that encodes critical neurochemical transmitters - results in altered metabolism, excess fat accumulation, and defects in the animal’s sense of smell and food seeking behaviour. Further, they identify specific cell membrane receptors, NPR-4 and NPR-5, which communicate signals between the nervous system and various target tissues, including the intestine, to keep energy expenditure in check with food availability.

Cells have to be ready to respond to signals in their environment, such as hormones or signals of nutrient availability. G protein-coupled receptors (GPCRs) are a large family of proteins that play a critical role in relaying signals from other cells and the environment; they sense molecules outside the cell, triggering biochemical cascades inside the cell to activate a cellular response, for example a change in metabolism in response to food. In animals, the NPY/RFamide GPCR family and their associated chemical signalling partners (ligands) operate together to maintain metabolic rate, regulate energy expenditure and fat storage. One such ligand, NPY, promotes appetite and another, PYY, which is released from the gut after eating provides feedback to limit further food intake.

C. elegans has 12 members of the NPY/RFamide receptor family in its genome and at least 23 RFamide genes, called flp genes. In this paper the Cambridge collaborators examine the interplay between specific receptors and flp genes to ascertain how food-seeking behaviour is co-ordinated with metabolism. Worms with mutations in the flp-18 gene have problems in sensing food and foraging behaviour, lay down increased amounts of intestinal fat and have slower metabolism. The authors also identify two receptors, NPR-4 and NPR-5, which are activated by the peptide products of the gene flp-18. They reveal that signalling via NPR-4 enables information to be relayed between the nervous system and the intestine.

Peptides encoded by flp-18 therefore appear to have a central role regulating food-seeking behaviour, fat accumulation and metabolism in response to food related signals in order to maintain a balance between food intake and energy expenditure. Owing to the evolutionary conservation of these mechanisms, studying the genetic and biochemical mechanisms behind food seeking behaviour in one of the simplest multi-cellular animals may also provide valuable insights into this process in humans. This research was supported with funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council.


Story Source:

The above story is based on materials provided by The Babraham Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cohen M, Reale V, Olofsson B, Knights A, Evans PD, de Bono M. Coordinated Regulation of Foraging and Metabolism in C. elegans by RFamide Neuropeptide Signaling. Cell Metabolism, 2009; 9 (4): 375 DOI: 10.1016/j.cmet.2009.02.003

Cite This Page:

The Babraham Institute. "Researchers Unravel Neuronal Circuitry Keeping Metabolism And Fat Storage In Check." ScienceDaily. ScienceDaily, 16 April 2009. <www.sciencedaily.com/releases/2009/04/090409104137.htm>.
The Babraham Institute. (2009, April 16). Researchers Unravel Neuronal Circuitry Keeping Metabolism And Fat Storage In Check. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2009/04/090409104137.htm
The Babraham Institute. "Researchers Unravel Neuronal Circuitry Keeping Metabolism And Fat Storage In Check." ScienceDaily. www.sciencedaily.com/releases/2009/04/090409104137.htm (accessed August 22, 2014).

Share This




More Mind & Brain News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins