Featured Research

from universities, journals, and other organizations

New Tag Could Enable More Detailed Structural Studies Of Mammalian Proteins

Date:
May 12, 2009
Source:
Rockefeller University
Summary:
To say our genes are resourceful is a gross understatement. Through ingenious combinations of a paltry 20 amino acids, the basic building blocks of life, genes engineer all of the tissues and organs that are the marvel of our working bodies.

To say our genes are resourceful is a gross understatement. Through ingenious combinations of a paltry 20 amino acids, the basic building blocks of life, genes engineer all of the tissues and organs that are the marvel of our working bodies.

Now scientists are adding to the parsimonious genetic repertoire to good effect: With careful targeting using genetic engineering, so-called unnatural amino acids can effectively tag proteins that scientists want to study, because, like a lighthouse beacon in a soupy fog, they stand out from the ones the body already produces.

In work published last month in Nature Chemical Biology, new research at The Rockefeller University reveals a method that could theoretically be adapted to place a fluorescent probe at any position in any protein in a mammalian cell. The new technology could enable single-molecule fluorescent studies in live cells, says Thomas P. Sakmar, head of the Laboratory of Molecular Biology and Biochemistry. “It’s a new tool to study membrane protein dynamics that should be of general use. We’re building technologies to move the science forward.”

Sakmar, research associate Thomas Huber and postdoctoral associate Shixin Ye, working with a colleague in Germany, Reiner Vogel, combined a variety of genetic engineering techniques to introduce an amino acid, azidoF, a relative of phenylalanine, into three points on rhodopsin, the light-sensitive cell receptor that is crucial to vision. The three-nitrogen-atom azido is an especially good probe for three reasons: In contrast to other tags, azido does not exist naturally in mammals, which makes it easier to “see;” it is small enough to not interfere with a protein’s normal functioning; and it has chemical properties that make it a good handle on which to hang other molecules, like fluorescent probes, says Huber.

Similar approaches have been successfully used in bacteria, but this is the first time it has been applied to mammalian cells with such specificity and efficiency, the scientists say. Extensive genetic screening allowed the team to target the azido probes efficiently. They then confirmed the presence of azido with fourier transform infrared (FTIR) difference spectroscopy, which measures stretching frequencies of the atoms in the amino acids that make up a protein.

Because azido has a unique vibration frequency that is sensitive to its surroundings, the team was able to use the spectroscopic data to confirm structural changes rhodopsin undergoes in light versus dark. “What you want is a probe that doesn’t perturb the protein and one that can tell you something about its structure,” Sakmar says. “That’s what we have here, and in principle, you can put it at any position of any protein of interest in a mammalian cell, which will allow us to study all of the interesting proteins that can’t be expressed in bacteria.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ye et al. FTIR analysis of GPCR activation using azido probes. Nature Chemical Biology, 2009; DOI: 10.1038/nchembio.167

Cite This Page:

Rockefeller University. "New Tag Could Enable More Detailed Structural Studies Of Mammalian Proteins." ScienceDaily. ScienceDaily, 12 May 2009. <www.sciencedaily.com/releases/2009/05/090510195552.htm>.
Rockefeller University. (2009, May 12). New Tag Could Enable More Detailed Structural Studies Of Mammalian Proteins. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2009/05/090510195552.htm
Rockefeller University. "New Tag Could Enable More Detailed Structural Studies Of Mammalian Proteins." ScienceDaily. www.sciencedaily.com/releases/2009/05/090510195552.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins