Featured Research

from universities, journals, and other organizations

Raising The Alarm When DNA Goes Bad: 'Rapid Response Team' Monitors And Quickly Responds To DNA Damage

Date:
August 22, 2009
Source:
European Molecular Biology Laboratory
Summary:
Scientists have known for a long time that when DNA is damaged, a key enzyme sets off a cellular "alarm bell" to alert the cell to start the repair process, but until recently little was known about how the cell detects and responds to this alarm. In a new study, researchers have identified a whole family of proteins capable of a direct response to the alarm signal.

Macrodomain-containing proteins rapidly respond to DNA damage: An ultraviolet laser is used to damage DNA within a human cell. This is a still image from a movie showing how a fluorescent version of a macrodomain-containing protein (labelled Af1521 here) rapidly accumulates at the site of DNA damage.
Credit: Image copyrighted EMBL

Our genome is constantly under attack from things like UV light and toxins, which can damage or even break DNA strands and ultimately lead to cancer and other diseases. Scientists have known for a long time that when DNA is damaged, a key enzyme sets off a cellular ‘alarm bell’ to alert the cell to start the repair process, but until recently little was known about how the cell detects and responds to this alarm.

In a study published in Nature Structural and Molecular Biology, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have identified a whole family of proteins capable of a direct response to the alarm signal.

Our genome is a huge repository of information guiding the construction and function of all the cells in our bodies. Cells sustain many hits to their DNA every day, which can lead tomutations, so they maintain a fleet of DNA repair machinery that can be rapidly mobilised and sent to damaged sites in an emergency.

Because our DNA is so long and unwieldy, it needs to be packaged up with proteins and organised into a complex structure called chromatin. Scientists have known for 50 years that one component of chromatin, an enzyme known as PARP1, is activated by DNA damage and produces a molecular signal, called PAR, which raises the alarm at the site of the damage. In recent weeks, scientists have for the first time worked out how PAR is rapidly detected by the cell; in their Nature Structural and Molecular Biology paper, the group of Andreas Ladurner and their colleagues at EMBL have identified a whole family of proteins that respond to this signal by binding to it directly.

What these proteins share is a special region called a macrodomain. By using a laser to reproduce DNA damage in the lab, the scientists were able to follow fluorescently-labelled macrodomain proteins in cells and observed that they quickly move to the site of DNA damage. A high-resolution image, obtained by X-ray crystallography, shows how the macrodomain forms a ‘pocket’ fitting the PAR signal exactly.

Among the members of the family the researchers found a protein called histone macroH2A1.1. “This was very surprising. Histones play a major role in assembling chromatin and keeping it together, but they don’t usually have macrodomains,” says Ladurner. “The finding is particularly relevant, because it turns out that cancer cells don’t have macroH2A1.1. The fact that one member of the rapid response team that detects DNA damage is missing could contribute to the disease.”

Because macroH2A1.1 is embedded in chromatin, when it recognises PAR at DNA damage sites, it drags the complex but highly-organised tangle of chromatin with it. As a result, macroH2A1.1 condenses the chromatin environment around the damaged area.

The scientists are now trying to understand why this happens. One plausible explanation could be that by temporarily compacting the DNA, the broken ends of the DNA molecule are kept closer together. This should increase the chances of being able to repair it.

“With these findings we’ve opened up completely new perspectives to a fifty-year-old field of research,” says Ladurner. “We’re very excited of what lies ahead and hope that we’ll soon be much closer in understanding how PARP1 and macrodomains together maintain a healthy genome.”


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

European Molecular Biology Laboratory. "Raising The Alarm When DNA Goes Bad: 'Rapid Response Team' Monitors And Quickly Responds To DNA Damage." ScienceDaily. ScienceDaily, 22 August 2009. <www.sciencedaily.com/releases/2009/08/090813170854.htm>.
European Molecular Biology Laboratory. (2009, August 22). Raising The Alarm When DNA Goes Bad: 'Rapid Response Team' Monitors And Quickly Responds To DNA Damage. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/08/090813170854.htm
European Molecular Biology Laboratory. "Raising The Alarm When DNA Goes Bad: 'Rapid Response Team' Monitors And Quickly Responds To DNA Damage." ScienceDaily. www.sciencedaily.com/releases/2009/08/090813170854.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins