Featured Research

from universities, journals, and other organizations

Artificial Life One Step Closer: Scientists Clone And Engineer Bacterial Genomes In Yeast And Transplant Genomes Back Into Bacterial Cells

Date:
August 22, 2009
Source:
J. Craig Venter Institute
Summary:
Scientists have developed new methods in which an entire bacterial genome was cloned in a yeast cell by adding yeast centromeric plasmid sequence to the bacterial chromosome and modified it in yeast using yeast genetic systems. This modified bacterial chromosome was then isolated from yeast and transplanted into a related species of bacteria to create a new type of cell.

Yeast. The entire bacterial genome from Mycoplasma mycoides was cloned in a yeast cell by adding yeast centromeric plasmid sequence to the bacterial chromosome and modifying it in yeast using yeast genetic systems. This modified bacterial chromosome was then isolated from yeast and transplanted into a related species of bacteria, Mycoplasma capricolum, to create a new type of M. mycoides cell.
Credit: Wikimedia Commons. Public Domain Image

Researchers at the J. Craig Venter Institute (JCVI), a not-for-profit genomic research organization, have just published results describing new methods in which the entire bacterial genome from Mycoplasma mycoides was cloned in a yeast cell by adding yeast centromeric plasmid sequence to the bacterial chromosome. Researchers modified it in yeast using yeast genetic systems. This modified bacterial chromosome was then isolated from yeast and transplanted into a related species of bacteria, Mycoplasma capricolum, to create a new type of M. mycoides cell.

Related Articles


This is the first time that genomes have been transferred between branches of life—from a prokaryote to eukaryote and back to a prokaryote. The research was published by Carole Lartigue et al in the journal Science on August 21.

Hamilton Smith, M.D., one of the leaders of the JCVI team said, “I believe this work has important implications in better understanding the fundamentals of biology to enable the final stages of our work in creating and booting up a synthetic genome. This is possibly one of the most important new findings in the field of synthetic genomics.”

The research published today was made possible by previous breakthroughs at JCVI. In 2007 the team published results from the transplantation of the native M. mycoides genome into the M. capricolum cell which resulted in the M. capricolum cell being transformed into M. mycoides. This work established the notion that DNA is the software of life and that it is the DNA that dictates the cell phenotype.

In 2008 the same team reported on the construction of the first synthetic bacterial genome by assembling DNA fragments made from the four chemicals of life—ACGT. The final assembly of DNA fragments into the whole genome was performed in yeast by making use of the yeast genetic systems. However, when the team attempted to transplant the synthetic bacterial genome out of yeast into a recipient bacterial cell, all the experiments failed.

The researchers had previously established that no proteins were required for chromosome transplantations, however they reasoned that DNA methylation (a chemical modification of DNA that bacterial cells use to protect their genome from degradation by restriction enzymes, which are the proteins that cut DNA at specific sites) might be required for transplantation. When the chromosome was isolated direct from the bacterial cells it was likely already methylated and therefore transplantable due to it being protected from the cells restriction enzymes.

In this study, the team began by cloning the native M. mycoides genome into yeast by adding a yeast centromere to the bacterial genome. This is the first time a native bacterial genome has been grown successfully in yeast. Specific methylase enzymes were isolated from M. mycoides and used to methylate the M. mycoides genome isolated from yeast. When the DNA was methylated the chromosome was able to be successfully transplanted into a wild type species of M. capricolum. However, if the DNA was not first methylated the transplant experiments were not successful. To prove that the restriction enzymes in the M. capricolum cell were responsible for the destruction of the transplanted genome the team removed the restriction enzyme genes from the M. capricolum genome. When genome transplantations were performed using the restriction enzyme minus recipient cells, all the genome transplantations worked regardless of if the DNA was methylated or not.

“The ability to modify bacterial genomes in yeast is an important advance that extends yeast genetic tools to bacteria. If this is extendable to other bacteria we believe that these methods may be used in general laboratory practice to modify organisms,” said Sanjay Vashee, Ph.D., JCVI researcher and corresponding author on the paper.

The team now has a complete cycle of cloning a bacterial genome in yeast, modifying the bacterial genome as though it were a yeast chromosome and transplanting the genome back into a recipient bacterial cell to create a new bacterial strain. These new methods and knowledge should allow the team to now transplant and boot up the synthetic bacterial genome successfully.

The research published August 21 by JCVI researchers was funded by the company Synthetic Genomics Inc., a company co-founded by Drs. Smith and Venter.


Story Source:

The above story is based on materials provided by J. Craig Venter Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lartigue et al. Creating Bacterial Strains from Genomes That Have Been Cloned and Engineered in Yeast. Science, August 20, 2009; DOI: 10.1126/science.1173759

Cite This Page:

J. Craig Venter Institute. "Artificial Life One Step Closer: Scientists Clone And Engineer Bacterial Genomes In Yeast And Transplant Genomes Back Into Bacterial Cells." ScienceDaily. ScienceDaily, 22 August 2009. <www.sciencedaily.com/releases/2009/08/090821205730.htm>.
J. Craig Venter Institute. (2009, August 22). Artificial Life One Step Closer: Scientists Clone And Engineer Bacterial Genomes In Yeast And Transplant Genomes Back Into Bacterial Cells. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2009/08/090821205730.htm
J. Craig Venter Institute. "Artificial Life One Step Closer: Scientists Clone And Engineer Bacterial Genomes In Yeast And Transplant Genomes Back Into Bacterial Cells." ScienceDaily. www.sciencedaily.com/releases/2009/08/090821205730.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins