Featured Research

from universities, journals, and other organizations

Messenger RNA Are Lost In Translation: Study Challenges Current View

Date:
August 25, 2009
Source:
Case Western Reserve University
Summary:
Scientists have discovered that messenger RNA predominately degrade on ribosomes, fundamentally altering a common understanding of how gene expression is controlled within the cell.

Case Western Reserve University School of Medicine assistant professor in the Center for RNA Molecular Biology, Jeff Coller, Ph.D., and his team discovered that messenger RNA (mRNA) predominately degrade on ribosomes, fundamentally altering a common understanding of how gene expression is controlled within the cell. The study is published in the latest issue of Nature.

"Many genetic diseases are linked to mutations that can cause mis-regulation of RNA destruction so it's important to know the when, where and how the cell normally controls the process of mRNA decay," said Dr. Coller.

mRNA communicates genetic information from DNA to ribosomes where the information is converted to proteins. Proteins catalyze the reactions of life and how much protein is made is critical to fine tune the function of the cell. This means that the amount of mRNA present within the cell is vital for overall cellular health.

The rates of RNA synthesis and destruction determine the overall levels of mRNA. While the details of mRNA synthesis have been studied intensely over the years, the mechanism(s) controlling mRNA decay remain unclear. Prior to Dr. Coller's study it had been thought that once an mRNA had ended its utility it was removed from ribosomes and possibly transported to specialized structures within the cell, called P-bodies, where they are eventually destroyed.

Contrary to this prediction, Dr. Coller's research demonstrates that decay takes place while mRNAs are associated with actively translating ribosomes.

"The data clearly indicate that sequestration into a ribosome-free state (like a P-body) is not a prerequisite for initiation of mRNA decay," said Dr. Coller. Moreover, Dr. Coller and colleagues believe that this new understanding provides an evolutionary explanation for the nature of the decay pathway and may lead into new insights into how cytoplasmic gene regulation occurs, offering insight into disease states that result when things go awry.

"A lot is known about how mRNAs are made, but much less is understood about the mechanisms that control their destruction," said Michael Bender, Ph.D., who oversees RNA processing grants at the National Institutes of Health's National Institute of General Medical Sciences. "This work breaks new ground by shedding light on one of the cell's major mRNA degradation pathways—a key regulatory point for gene expression—and by challenging accepted models of mRNA decay."

Dr. Coller's findings raise several interesting mechanistic questions, for instance how mRNA's are destroyed at different rates. Some are long lived, some short lived. Scientists currently do not understand how these differences in mRNA decay rate are determined, but clearly this understanding is vital for predicting how mutations will impact cellular function.

"Now that we have found that mRNAs are degraded on ribosomes we can begin to understand how the degradation machinery interacts with ribosomes and how it is triggered to destroy the message," said Dr. Coller. "Eventually, we hope to create a rule book that would allow us to predict which mRNA is going to last only a few minutes and which will be expressed hours or days. This has huge impact on cellular protein levels and perhaps this understanding would lead to new advances in gene therapy and viral vaccinations."

Funding for this study was provided by the American Heart Association and National Institute of Health.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hu et al. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature, 2009; DOI: 10.1038/nature08265

Cite This Page:

Case Western Reserve University. "Messenger RNA Are Lost In Translation: Study Challenges Current View." ScienceDaily. ScienceDaily, 25 August 2009. <www.sciencedaily.com/releases/2009/08/090823184349.htm>.
Case Western Reserve University. (2009, August 25). Messenger RNA Are Lost In Translation: Study Challenges Current View. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2009/08/090823184349.htm
Case Western Reserve University. "Messenger RNA Are Lost In Translation: Study Challenges Current View." ScienceDaily. www.sciencedaily.com/releases/2009/08/090823184349.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins