Featured Research

from universities, journals, and other organizations

'Clueless' housekeeping genes are activated randomly, study finds

Date:
December 6, 2010
Source:
Albert Einstein College of Medicine
Summary:
Scientists have made an unexpected finding about the method by which certain genes are activated. Contrary to what researchers have traditionally assumed, genes that work with other genes to build protein structures do not act in a coordinated way but instead are turned on randomly. The surprising discovery may fundamentally change the way scientists think about the way cellular processes are synchronized.

Rendering of chromosomes. Scientists have made an unexpected finding about the method by which certain genes are activated. Contrary to what researchers have traditionally assumed, genes that work with other genes to build protein structures do not act in a coordinated way but instead are turned on randomly. The surprising discovery may fundamentally change the way scientists think about the way cellular processes are synchronized.
Credit: iStockphoto/Felix Mφckel

Scientists at Albert Einstein College of Medicine of Yeshiva University have made an unexpected finding about the method by which certain genes are activated. Contrary to what researchers have traditionally assumed, genes that work with other genes to build protein structures do not act in a coordinated way but instead are turned on randomly. The surprising discovery, described in the December 5 online edition of Nature Structural and Molecular Biology, may fundamentally change the way scientists think about the way cellular processes are synchronized.

All cells contain protein complexes that perform essential functions, such as producing energy and helping cells divide. Assembling these multi-protein structures requires many different genes, each of which codes for one of the proteins that, collectively, form what's known as the protein complex. Ribosomes, for example, are the vitally important structures on which proteins are synthesized. (The ribosomes of humans and most other organisms are composed of ribonucleic acid (RNA) and 80 different proteins.) Scientists have long assumed that genes involved in making such complex structures are activated in a highly-coordinated way.

"What we found was rather astonishing," said Robert Singer, Ph.D., professor and co-chair of anatomy and structural biology, professor of cell biology and of neuroscience at Einstein and senior author of the study. "The expression of the genes that make the protein subunits of ribosomes and other multi-protein complexes is not at all coordinated or co-regulated. In fact, such genes are so out of touch with each other that we dubbed them "clueless" genes."

Gene expression involves transcribing a gene's deoxyribonucleic acid (DNA) message into molecules of messenger RNA, which migrate from the nucleus of a cell into the surrounding cytoplasm to serve as blueprints for protein construction. To assess the coordinated expression of particular genes, Dr. Singer and his colleagues measured the abundance of messenger RNA molecules transcribed by those genes in individual cells. The messenger RNA molecules made by clusters of clueless genes exhibited no more coordination than the messenger RNA from totally unrelated genes did.

The "clueless" genes coding for ribosomes and other multi-protein structures are referred to as housekeeping genes, since their essential tasks require them to be "on call" 24/7, while other gene clusters remain silent until special circumstances induce them to become active. The researchers found that these induced genes, in contrast to the "clueless" housekeeping genes, act in an expected (well-regulated) way. For example, growing yeast cells in nutrient media containing the sugar galactose triggered the highly-coordinated expression of the three genes required to metabolize galactose.

"Our findings show that for a major class of genes -- those housekeeping genes that make ribosomes, proteasomes and other essential structures -- cells employ very simple modes of gene expression that require much less coordination than previously thought," said Saumil Gandhi, the lead author of the study. "Those genes become active randomly, with each member of a functionally related gene cluster encoding a protein while having no clue what the other genes in the cluster are doing. Yet the cell somehow manages to deal with this randomness in successfully assembling these multi-protein complexes."


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Saumil J Gandhi, Daniel Zenklusen, Timothιe Lionnet, Robert H Singer. Transcription of functionally related constitutive genes is not coordinated. Nature Structural & Molecular Biology, 2010; DOI: 10.1038/nsmb.1934

Cite This Page:

Albert Einstein College of Medicine. "'Clueless' housekeeping genes are activated randomly, study finds." ScienceDaily. ScienceDaily, 6 December 2010. <www.sciencedaily.com/releases/2010/12/101205202508.htm>.
Albert Einstein College of Medicine. (2010, December 6). 'Clueless' housekeeping genes are activated randomly, study finds. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/12/101205202508.htm
Albert Einstein College of Medicine. "'Clueless' housekeeping genes are activated randomly, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/12/101205202508.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) — The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) — Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins