Featured Research

from universities, journals, and other organizations

New finding in ribosome signaling may lead to improved antibiotics

Date:
February 24, 2011
Source:
University of Illinois at Chicago
Summary:
Researchers have discovered a signaling mechanism in the bacterial ribosome that detects proteins that activate genes for antibiotic resistance.

Researchers at the University of Illinois at Chicago have discovered a signaling mechanism in the bacterial ribosome that detects proteins that activate genes for antibiotic resistance.

Related Articles


"The ribosome is one of the most complex molecular machines in the cell," said Alexander Mankin, UIC professor and director of the Center for Pharmaceutical Biotechnology. It is responsible for the production of all proteins in the cell, and in bacteria it is one of the major antibiotic targets.

Understanding how signals are generated and transmitted within the ribosome, Mankin said, may one day lead to better antibiotics.

Mankin's research, funded by the National Science Foundation, has been published in the journal Molecular Cell.

The ribosome is responsible for activating some antibiotic resistance genes in the presence of certain proteins. For that to occur, special sensors in the ribosome must recognize cellular cues and the structure of the regulatory protein. Once the signal is detected, it is then transmitted to the functional centers which alter the ribosome's performance.

Mankin's latest research has found at least one of the signal pathways in the ribosome. He and his coworkers found that the presence of the regulatory protein as it is made within the ribosome changes the properties of the ribosome's catalytic center.

Under normal conditions, the ribosome's catalytic center can accept any of the 20 natural amino acids, which are then added to the growing protein chain.

However, if the ribosome has synthesized the regulatory protein in the presence of an antibiotic, the catalytic center rejects some or even all amino acids. As a result, synthesis of the regulatory protein stops, and the genes of antibiotic resistance are activated.

"This is one of the strategies used by pathogenic bacteria exposed to antibiotics to regulate expression of antibiotic resistance genes," Mankin said.

In previous studies, Mankin and his research team pinpointed some of the ribosomal RNA residues that interact with the growing regulatory peptide, thus serving the function of the peptide sensors.

Mankin and his research team -- Haripriya Ramu, Nora Vazquez-Laslop and Dorota Klepacki -- was assisted by Qing Dai and Joseph Piccirilli, of the University of Chicago and Ronald Micura of the University of Innsbruck in Austria.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haripriya Ramu, Nora Vázquez-Laslop, Dorota Klepacki, Qing Dai, Joseph Piccirilli, Ronald Micura, Alexander S. Mankin. Nascent Peptide in the Ribosome Exit Tunnel Affects Functional Properties of the A-Site of the Peptidyl Transferase Center. Molecular Cell, 2011; 41 (3): 321 DOI: 10.1016/j.molcel.2010.12.031

Cite This Page:

University of Illinois at Chicago. "New finding in ribosome signaling may lead to improved antibiotics." ScienceDaily. ScienceDaily, 24 February 2011. <www.sciencedaily.com/releases/2011/02/110223092404.htm>.
University of Illinois at Chicago. (2011, February 24). New finding in ribosome signaling may lead to improved antibiotics. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/02/110223092404.htm
University of Illinois at Chicago. "New finding in ribosome signaling may lead to improved antibiotics." ScienceDaily. www.sciencedaily.com/releases/2011/02/110223092404.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) — For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) — The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) — A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) — Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins