Featured Research

from universities, journals, and other organizations

How 'railways' within cells are built in order to transport essential cargos

Date:
September 2, 2011
Source:
Brandeis University
Summary:
Every cell in the human body contains a complex system to transport critical material such as proteins and membrane vesicles from one point to another. Researchers have now come one step closer to understanding the elusive mechanics of this process.

Every cell in the human body contains a complex system to transport essential cargoes such as proteins and membrane vesicles, from point A to point B. These tiny molecular motor proteins move at blistering speeds on miniature railways carrying components of the cell to their proper destinations. But just how cells construct these transport railways to fit precisely inside of confined spaces of the individual cells has been a complex question, as it is critical that these railways do not grow too long or come up too short, as that would cause a misdirection of the proteins being transported.

Bruce Goode, professor of biology, working in collaboration with the labs of Laurent Blanchoin (Grenoble, France) and Roland Wedlich-Soldner (Munich, Germany), have come one step closer to understanding the elusive mechanics of this process.

In a recent paper published in Developmental Cell, a team led by Goode's Ph.D. student Melissa Chesarone-Cataldo shows that the length of the railways is controlled by one of its "passengers," which pauses during the journey to communicate with the machinery that is building the railways.

"The frequency of these chats between the passengers and builders may provide the feedback necessary to say a railway is long enough, and construction should now slow down," says Goode.

Much like a real construction site, a system must be in place with roadways and transporters to move the building materials. In this case, cellular proteins called actin cables act as the roadways, and the transporters are myosin molecules, nanoscale motor proteins that rapidly deliver critical cargoes to one end of a cell. Each cable is assembled from hundreds or thousands of copies of the actin, which is called a helical filament.

Nine years ago, Goode and his colleagues discovered that a family of proteins called formins stimulate the rapid growth of actin filaments. Recently, the team began to question how a cell controls the power of formins, which tell them when to speed up, when to slow down, when to stop altogether.

Enter Smy1, a myosin-passenger protein.

Goode and his colleagues hypothesized that a passenger protein like Smy1 would provide the perfect mechanism for slowing down formins when roadways are longer and would be carrying more passengers. They tested their theory in yeast cells, where formins construct actin cables that transport building materials essential for cell growth and division. As Goode says, they struck gold.

When they deleted the gene for Smy1, cables grew abnormally fast and hit the back of the cell, buckling and misdirecting transport. When they purified Smy1 and placed it in a test tube with formins they discovered that Smy1 slows down actin filament growth.

To further explore, they tagged Smy1 in living cells and learned that Smy1 molecules are carried on cables by myosin to the formin, where they pause for 1-2 seconds to give formins the message to slow down.

Goode says their working model illustrates that as a cable grows longer, it loads up more and more Smy1 molecules, which are transported on the cable to send a message to the formin to slow down.

"This prevents overgrowth of longer cables that are nearing the back of the cell, but allows rapid growth of the shorter cables," says Goode.

This paper will help scientists understand the general mechanisms that are used for directing cell shape and division. The next challenge says Goode, is "to find out whether related mechanisms are used to control formins in mammalian cells and understand the physiological consequences of disrupting those mechanisms."


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Melissa Chesarone-Cataldo, Christophe Guιrin, Jerry H. Yu, Roland Wedlich-Soldner, Laurent Blanchoin, Bruce L. Goode. The Myosin Passenger Protein Smy1 Controls Actin Cable Structure and Dynamics by Acting as a Formin Damper. Developmental Cell, 2011; 21 (2): 217 DOI: 10.1016/j.devcel.2011.07.004

Cite This Page:

Brandeis University. "How 'railways' within cells are built in order to transport essential cargos." ScienceDaily. ScienceDaily, 2 September 2011. <www.sciencedaily.com/releases/2011/09/110902110242.htm>.
Brandeis University. (2011, September 2). How 'railways' within cells are built in order to transport essential cargos. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/09/110902110242.htm
Brandeis University. "How 'railways' within cells are built in order to transport essential cargos." ScienceDaily. www.sciencedaily.com/releases/2011/09/110902110242.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins