Featured Research

from universities, journals, and other organizations

Bioengineering to generate healthy skin

Date:
October 18, 2011
Source:
Universidad Carlos III de Madrid - Oficina de Información Científica
Summary:
Scientists are participating in research to study how to make use of the potential for auto regeneration of stem skills from skin, in order to create, in the laboratory, a patient's entire cutaneous surface by means of a combination of biological engineering and tissue engineering techniques.

The ability to generate mice that can have part of their skin replaced with human skin allows in vivo studies to be carried out; these studies could not be carried out any other way, given that human volunteers cannot be used due to ethical considerations.
Credit: UC3M

Scientists at Universidad Carlos III de Madrid (UC3M -- Carlos III University) are participating in research to study how to make use of the potential for auto regeneration of stem skills from skin, in order to create, in the laboratory, a patient's entire cutaneous surface by means of a combination of biological engineering and tissue engineering techniques.

Related Articles


Skin is a tissue that naturally renews itself throughout our lives thanks to the existence of epidermic stem cells. "We have found that this regenerative potential can be preserved in vitro (in the laboratory) if the cells are joined and become part of generated skin using tissue bioengineering techniques," explains Marcela del Río, of UC3M's Bioengineering. The research group in which she participates, made up of scientists from the UC3M, from CIEMAT (the Center for Energy, Environmental and Technological Research) and CIBERER (the Center for Biomedical Research in the Rare Disease Network) of the Carlos III Health Institute, has been working with this type of adult stem cells for years, with the objective of using them to regenerate patients' skin.

The researchers have already been able to join together these epidermic stem cells into skin created by means of bioengineering, and they have observed that the cells preserve the regenerative potential that they normally have in our skin. That is, using a small biopsy from a specific patient, they can generate almost the entire cutaneous surface of that individual in the lab. "The regenerative capacity of epidermic stem cells in these conditions is overwhelming, and it leads to the possibility of using these cells as a target for even more complex protocols, such as gene therapy," indicates Marcela del Río, who is a professor in the new Biomedical Engineering degree program at this Madrid university.

Patches of healthy skin

In fact, these researchers have already demonstrated, at the pre-clinical level, that it is possible to isolate epidermic stem cells from patients with different genetic skin diseases, cultivate them and, using molecular engineering as a first step, incorporate the therapeutic genes into each patient's genome to take the place of the one that the patient does not have or that functions abnormally. Afterwards, in the second step, the stem cells would be assembled into patches ready to be transplanted onto the patients.

In recent studies, researchers have isolated stem cells from patients suffering from Netherton syndrome, a genetic illness characterized by an excessive peeling of the skin that leads to a loss of the barrier function of the skin, which inhibits the loss of fluids so that we do not become dehydrated, or which stops pathogens that can cause infections from entering our bodies. These patients have a neonatal mortality rate of between 10 and 15 percent; the molecular basis of this pathology lies in a mutation of one gene, known as SPINK-5.

This gene inhibits the production of a protein that controls the process of skin shedding, ensuring that it occurs correctly. "What we did in this case -- explains Marcela del Río -- was to transfer a normal SPINK-5 gene to a patient's stem cells and later use these cells to generate skin that could be transplanted to experimental models, such as mice."

The results, which were recently published in the Journal of Investigative Dermatology, were that human skin that was regenerated in these immunodeficient mice showed a completely normal peeling process, so that epidermic structure and function were reestablished. "These pre-clinical studies could be transferred to clinical practice in the medium term, and could become a therapeutic strategy for patients who might otherwise have no treatment available to them," concludes the researcher.


Story Source:

The above story is based on materials provided by Universidad Carlos III de Madrid - Oficina de Información Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marta García, Fernando Larcher, Robyn P Hickerson, Eulalia Baselga, Sancy A Leachman, Roger L Kaspar, Marcela Del Rio. Development of Skin-Humanized Mouse Models of Pachyonychia Congenita. Journal of Investigative Dermatology, 2010; 131 (5): 1053 DOI: 10.1038/jid.2010.353

Cite This Page:

Universidad Carlos III de Madrid - Oficina de Información Científica. "Bioengineering to generate healthy skin." ScienceDaily. ScienceDaily, 18 October 2011. <www.sciencedaily.com/releases/2011/10/111017075511.htm>.
Universidad Carlos III de Madrid - Oficina de Información Científica. (2011, October 18). Bioengineering to generate healthy skin. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/10/111017075511.htm
Universidad Carlos III de Madrid - Oficina de Información Científica. "Bioengineering to generate healthy skin." ScienceDaily. www.sciencedaily.com/releases/2011/10/111017075511.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins