Featured Research

from universities, journals, and other organizations

Fundamental malaria discovery: How parasites target proteins to surface of red blood cells

Date:
January 22, 2012
Source:
University of Notre Dame
Summary:
Researchers have made a fundamental discovery in understanding how malaria parasites cause deadly disease. The researchers show how parasites target proteins to the surface of the red blood cell that enables sticking to and blocking blood vessels. Strategies that prevent this host-targeting process will block disease.

A team of researchers led by Kasturi Haldar and Souvik Bhattacharjee of the University of Notre Dame's Center for Rare and Neglected Diseases has made a fundamental discovery in understanding how malaria parasites cause deadly disease.

Related Articles


The researchers show how parasites target proteins to the surface of the red blood cell that enables sticking to and blocking blood vessels. Strategies that prevent this host-targeting process will block disease.

The research findings appear in the Jan. 20 edition of the journal Cell. The study was supported by the National Institutes of Health.

Malaria is a blood disease that kills nearly 1 million people each year. It is caused by a parasite that infects red cells in the blood. Once inside the cell, the parasite exports proteins beyond its own plasma membrane border into the blood cell. These proteins function as adhesins that help the infected red blood cells stick to the walls of blood vessels in the brain and cause cerebral malaria, a deadly form of the disease that kills over half a million children each year.

In all cells, proteins are made in a specialized cell compartment called the endoplasmic reticulum (ER) from where they are delivered to other parts of the cell. Haldar and Bhattacharjee and collaborators Robert Stahelin at the Indiana University School of Medicine-South Bend (who also is an adjunct faculty member in Notre Dame's Department of Chemistry and Biochemistry), and David and Kaye Speicher at the University of Pennsylvania's Wistar Institute discovered that for host-targeted malaria proteins the very first step is binding to the lipid phosphatidylinositol 3-phosphate, PIP, in the ER.

This was surprising for two reasons. Previous studies suggested an enzyme called Plasmepsin V that released the proteins into the ER was also the export mechanism. However, Haldar, Bhattacharjee and colleagues discovered that binding to PIP lipid which occurs first is the gate keeper to control export and that export can occur without Plasmepsin V action. Further, in higher eukaryotic cells (such as in humans), the lipid PIP is not usually found within the ER membrane but rather is exposed to the cellular cytoplasm.

Haldar and Bhattacharjee are experts in malaria parasite biology and pathogenesis. Stahelin is an expert in PIP lipid biology, and David and Kaye Speicher are experts in proteomics and a method called mass spectrometry.

Their interdisciplinary collaboration reveals a fundamental, novel cellular function, whose disruption can provide new therapies that are urgently needed for malaria.


Story Source:

The above story is based on materials provided by University of Notre Dame. The original article was written by Pamela Tamez and William Gilroy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Souvik Bhattacharjee, RobertV. Stahelin, KayeD. Speicher, DavidW. Speicher, Kasturi Haldar. Endoplasmic Reticulum PI(3)P Lipid Binding Targets Malaria Proteins to the Host Cell. Cell, 2012; 148 (1-2): 201 DOI: 10.1016/j.cell.2011.10.051

Cite This Page:

University of Notre Dame. "Fundamental malaria discovery: How parasites target proteins to surface of red blood cells." ScienceDaily. ScienceDaily, 22 January 2012. <www.sciencedaily.com/releases/2012/01/120120184532.htm>.
University of Notre Dame. (2012, January 22). Fundamental malaria discovery: How parasites target proteins to surface of red blood cells. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2012/01/120120184532.htm
University of Notre Dame. "Fundamental malaria discovery: How parasites target proteins to surface of red blood cells." ScienceDaily. www.sciencedaily.com/releases/2012/01/120120184532.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com
Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com
New Hormone Could Protect Against Diabetes And Weight Gain

New Hormone Could Protect Against Diabetes And Weight Gain

Newsy (Mar. 4, 2015) A newly discovered hormone mimics the effects of exercise, protecting against diabetes and weight gain. Video provided by Newsy
Powered by NewsLook.com
Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Reuters - Entertainment Video Online (Mar. 4, 2015) Britain&apos;s Prince William pledges to unite against illegal wildlife trade on the final day of his visit to China. Rough cut - no reporter narration Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins