Featured Research

from universities, journals, and other organizations

New insights into how cells duplicate their DNA

Date:
March 29, 2012
Source:
DOE/US Department of Energy
Summary:
Scientists have discovered new insights into how cells duplicate their DNA. They used an imaging method known as cryo-electron microscopy to take extremely high resolution images of how the right proteins come together at the right point on the DNA strands, forming a structure called an "origin recognition complex" (ORC). The lab's first-of-a-kind images (taken using yeast cells, which are also eukaryotes), showed how the shape of the complex changes as it sets the DNA up for duplication.

The DNA replication origin recognition complex (ORC) is a six-protein machine with a slightly twisted half-ring structure (yellow). ORC is proposed to wrap around and bend approximately 70 base pairs of double stranded DNA (red and blue). When a replication initiator Cdc6 (green) joins ORC, the partial ring is now complete and ready to load another protein onto the DNA. This last protein (not shown) is the enzyme that unwinds the double stranded DNA so each strand can be replicated.
Credit: Image courtesy of Brookhaven National Laboratory

In the beginning ... but how do you begin? That question has long perplexed scientists in fields from cosmology to anthropology. Fortunately, researchers at the Office of Science's Brookhaven National Lab (Brookhaven Lab) are beginning to get at the answer on a small but important scale -- in biology.

Specifically, the researchers looked at how cells begin to duplicate their DNA, so they can then begin to replicate themselves. DNA is the essential stuff of beginnings. Its double strands -- which consist of chemical 'letters' or base pairs -- tell cells how to remake themselves; how to build the protein machines that keep them alive and make them distinct. So before they divide, cells have to duplicate their DNA.

This is a relatively straightforward affair for bacteria (and other simple cells, also called prokaryotes) since they typically only have a single loop of DNA, even though it can be millions of base pairs long. As a consequence, they have just a single point along the strand where the copying starts, called an origin of replication.

However, most of biology that can be seen with the naked eye -- animals and plants and even humble yeast -- is composed of more complicated cells called eukaryotes. Eukaryotes have much more DNA, which is tightly wound into distinct pieces, or spindles, called chromosomes, each of which may have many origins of replication. 'Top gun' cells, say those in humans, have a need for speed, since they have some 3.4 billion DNA base pairs, all of which have to be pulled apart and copied. So in order to finish in a reasonable amount of time, those cells have to begin copying their DNA simultaneously at tens of thousands of different points.

But how do they begin? Namely, how do protein machines find and bind to the right spots along the DNA strands, and then set them up for copying? That's what the team at Brookhaven Lab studied. They used an imaging method known as cryo-electron microscopy to take extremely high resolution images of how the right proteins come together at the right point on the DNA strands, forming a structure called an "origin recognition complex" (ORC). The lab's first-of-a-kind images (taken using yeast cells, which are also eukaryotes), showed how the shape of the complex changes as it sets the DNA up for duplication.

Scientists then gathered additional details about individual parts of the structure from previously made X-ray crystallography images, which showed the positions of many individual portions of the complex. Then they took all of their information and ran a detailed computer simulation, which gave scientists a good idea of how the whole process works.

That's important since beginnings can go bad, and uncontrolled cell division is the hallmark of many cancers. The new insights from Brookhaven Lab might lead to new ways to attack cancers at a basic level, one reason that the research was also supported by the National Institutes of Health.

But there's also a deeper reason to do basic research. Beginnings are one of the most precious opportunities of all, the chance to create, to discover. That's what happens with each new experiment run at National Laboratories supported by the Office of Science: Each day it's a new chance to begin again…in the beginning.


Story Source:

The above story is based on materials provided by DOE/US Department of Energy. The original article was written by Charles Rousseaux. Note: Materials may be edited for content and length.


Cite This Page:

DOE/US Department of Energy. "New insights into how cells duplicate their DNA." ScienceDaily. ScienceDaily, 29 March 2012. <www.sciencedaily.com/releases/2012/03/120329101904.htm>.
DOE/US Department of Energy. (2012, March 29). New insights into how cells duplicate their DNA. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/03/120329101904.htm
DOE/US Department of Energy. "New insights into how cells duplicate their DNA." ScienceDaily. www.sciencedaily.com/releases/2012/03/120329101904.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins