Featured Research

from universities, journals, and other organizations

Scientists discover a new sensory organ in the chin of baleen whales

Date:
May 23, 2012
Source:
Smithsonian
Summary:
Lunge feeding in rorqual whales (a group that includes blue, humpback and fin whales) is unique among mammals, but details of how it works have remained elusive. Now, scientists have solved the mystery. They discovered a sensory organ in the chin of rorqual whales that communicates to the brain. The organ orchestrates the dramatic adjustments needed in jaw position and throat-pouch expansion to make lunge feeding successful.

From left to right, Jeremy Goldbogen of the Cascadia Research Collective, A. Wayne Vogland and Robert Shadwick point to a ridge of tissue sampled from the throat pouch a fin whale (background) in Iceland.
Credit: Nicholas Pyenson / Smithsonian

Lunge feeding in rorqual whales (a group that includes blue, humpback and fin whales) is unique among mammals, but details of how it works have remained elusive. Now, scientists from the Smithsonian Institution and University of British Columbia have solved the mystery. They discovered a sensory organ in the chin of rorqual whales that communicates to the brain. The organ orchestrates the dramatic changes and adjustments needed in jaw position and throat-pouch expansion to make lunge feeding successful.

The team's research will be the featured cover story in the May 24 issue of Nature.

Rorqual whales are among the largest vertebrates, yet they feed on some of the smallest organisms in the ocean. They race forward, engulfing more than their own body weight in water and then filter out the millions of krill and small fish inside their mouths―all within seconds. This feeding technique is made possible by several morphological specializations, including hyper-expandable throat pleats, a Y-shaped cartilage structure connecting the chin to the throat pleats and a lower jaw made of two separate bones that move independently. The discovery of this sensory organ is shedding new light on how these features coordinate to create successful feeding.

The organ, composed of connective tissue with papillae (protrusions) that contain nerves, is suspended in a gel-like material and is located in the whale's chin in the space between the tips of the two lower jaw bones. Vascular and nervous tissue from an ancestral front tooth socket still remains in today's whales and connect to the sensory organ. Evidence indicates that the sensory organ responds to jaw rotation when the whale opens and closes its mouth and when the whale's throat pleats expand as it takes in water.

"The odd arrangement of tissues didn't make much sense to us at first, but then we realized that this organ was perfectly placed, anatomically, to coordinate a lunge because that soft structure is pinched by the tips of the jaws, and deforms through the course of a lunge," said Nicholas Pyenson, paleobiologist at the Smithsonian's National Museum of Natural History and lead author of the research. "This deformation is registered by the nerves inside the organ, informing the gulping whale about its gigantic jaws, which must close before prey escape. This finding answers several outstanding theoretical questions and puzzling field data that suggest rorquals actively control their lunge, rather than letting their mouths passively inflate like a parachute."

Fossil records show that the bottom jaw of baleen whales has been unfused, or separated, at its tip since the late Oligocene epoch (23-28 million years ago). Despite the long expanse of time to the present, this organ represents an evolutionary novelty for rorqual whales, based on its absence in all other modern species of baleen whale, such as gray and right whales. This organ has a fundamental role in one of the most extreme feeding methods in aquatic vertebrates, which facilitated the evolution of the largest vertebrates ever.

Because lunge feeding is a critical part of maintaining their large body size―blue whales can grow to more than 100 feet in length and weigh more than 150 tons―this discovery helps illuminate the set of anatomical and behavioral innovations that happened in evolutionary history of rorquals that allowed them to become oceanic giants. "It is a supreme irony," Pyenson said, "that even after several decades of whaling where scientists had the opportunity to observe hundreds of thousands of whale carcasses, we are still only beginning to understand the anatomy of the largest ocean predators of all time."


Story Source:

The above story is based on materials provided by Smithsonian. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicholas D. Pyenson, Jeremy A. Goldbogen, A. Wayne Vogl, Gabor Szathmary, Richard L. Drake, Robert E. Shadwick. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature, 2012; 485 (7399): 498 DOI: 10.1038/nature11135

Cite This Page:

Smithsonian. "Scientists discover a new sensory organ in the chin of baleen whales." ScienceDaily. ScienceDaily, 23 May 2012. <www.sciencedaily.com/releases/2012/05/120523133230.htm>.
Smithsonian. (2012, May 23). Scientists discover a new sensory organ in the chin of baleen whales. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/05/120523133230.htm
Smithsonian. "Scientists discover a new sensory organ in the chin of baleen whales." ScienceDaily. www.sciencedaily.com/releases/2012/05/120523133230.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


A Whale of a Discovery: New Sensory Organ Found in Rorqual Whales

May 23, 2012 — Scientists have discovered a sensory organ in rorqual whales that coordinates its signature lunge-feeding behavior -- and may help explain their enormous size. Rorquals are a subgroup of baleen ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins