Featured Research

from universities, journals, and other organizations

Tomato genomes sequenced: Both domesticated type and wild ancestor

Date:
May 30, 2012
Source:
Hebrew University of Jerusalem
Summary:
The tomato genome sequence -- both the domesticated type and its wild ancestor, Solanum pimpinellifolium -- has been sequenced for the first time by a large international team of scientists. The sequences provide the most detailed look yet at the tomato genome, revealing the order, orientation, types and relative positions of its 35,000 genes. The sequences will help researchers uncover the relationships between tomato genes and traits and broaden their understanding of how genetics and environmental factors interact to determine a field crop's health and viability.

Tomatoes ripening.
Credit: © dbj65 / Fotolia

The tomato genome sequence -- both the domesticated type and its wild ancestor, Solanum pimpinellifolium -- has been sequenced for the first time by a large international team of scientists, including a researcher from the Hebrew University of Jerusalem.

Related Articles


The sequences provide the most detailed look yet at the tomato genome, revealing the order, orientation, types and relative positions of its 35,000 genes. The sequences will help researchers uncover the relationships between tomato genes and traits and broaden their understanding of how genetics and environmental factors interact to determine a field crop’s health and viability.

The achievement -- an important tool for further development of better tomato production -- by the 300-plus-member Tomato Genome Consortium (TGC) is reported on in the May 31 issue of the journal Nature.

The consortium includes Prof. Dani Zamir of the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University.Other scientists in the project are from Argentina, Belgium, China, France, Germany, India, Italy, Japan, South Korea, Spain, the Netherlands, the United Kingdom and the United States.

When Columbus brought tomato seed from America to the old world some 500 years ago, he probably never imagined that it would be such a major contributor to human nutrition, health, culinary pleasure and international cooperation. This latest quantum leap in knowledge of the tomato genetic code (35,000 genes) provides a means to match DNA sequences with specific traits that are important for human well being or taste, such as flavor, aroma, color and yield.

Tomato is a member of the Solanaceae or nightshade family, and the new sequences are expected to provide reference points helpful for identifying important genes in tomato’s Solanaceae relatives. The group includes potato, pepper, eggplant and petunia and is among the world’s most important vegetable plant families in terms of both economic value and production volume.

Beyond improvement of the tomato, the genome sequence also provides a framework for studying closely related plants, such as potato, pepper, petunia and even coffee. These species all have very similar sets of genes, yet they look very different.

How can a similar set of "genetic blueprints" empower diverse plants with different adaptations, characteristics and economic products? This challenging question is being explored by comparing biodiversity and traits of tomato and its relatives.

The Tomato Genome Consortium started its work in 2003, when scientists analyzed the DNA sequence of tomato using the most modern equipment available at the time. Fortunately, with the recent introduction of so-called "next generation sequencing" technologies, the speed of data output increased 500-fold and enabled the project to move on efficiently to its conclusion.


Story Source:

The above story is based on materials provided by Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Journal Reference:

  1. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012; 485 (7400): 635 DOI: 10.1038/Nature11119

Cite This Page:

Hebrew University of Jerusalem. "Tomato genomes sequenced: Both domesticated type and wild ancestor." ScienceDaily. ScienceDaily, 30 May 2012. <www.sciencedaily.com/releases/2012/05/120530133622.htm>.
Hebrew University of Jerusalem. (2012, May 30). Tomato genomes sequenced: Both domesticated type and wild ancestor. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/05/120530133622.htm
Hebrew University of Jerusalem. "Tomato genomes sequenced: Both domesticated type and wild ancestor." ScienceDaily. www.sciencedaily.com/releases/2012/05/120530133622.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) — A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) — A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) — The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) — Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Tomato Genome Gets Fully Sequenced -- Paves Way to Healthier Fruits, Veggies

May 30, 2012 — For the first time, the genome of the tomato, Solanum lycopersicum, has been decoded, and it becomes an important step toward improving yield, nutrition, disease resistance, taste and color of the ... read more

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins