Featured Research

from universities, journals, and other organizations

Stealing life's building blocks

Date:
June 6, 2012
Source:
Harvard University
Summary:
A parasitic flower "steals" large portions of its genetic code from its host, and some genes borrowed by the flowers may even be functional, surprising new research shows. The finding suggests that the process may convey some evolutionary advantage to the flowers.

BMC Genomics reveals that the Malaysian parasitic plant Rafflesia cantleyi has "stolen" genes from its host Tetrastigma rafflesiae.
Credit: Matt Klooster

In a finding that could fundamentally re-write science's understanding of how some parasite-host relationships work, Harvard researchers have found that, despite being separated by more than 100 million years of evolution, the parasitic "corpse flower" found in southeast Asian rainforests appears to share large parts of its genome with its host vines, members of the grapevine family.

The two plants share parts of their genome, researchers believe, through a process known as "horizontal gene transfer." As opposed to vertical transfer, in which a parent passes genes to their offspring, horizontal transfer occurs when genes are passed between organisms without sexual reproduction.

As described in the June 6 issue of BMC Genomics in a study that was co-lead with Stony Brook University, researchers found that this type of genetic sharing between these two plants is much more widespread than first suspected, and that some genes borrowed by the flowers are likely functional, and had perhaps replaced vertically inherited copies. The surprising finding, Charles Davis, Professor of Organismic and Evolutionary Biology and Curator of Vascular Plants in the Harvard University Herbaria, said, suggests that the process may convey some evolutionary advantage to the flowers, which are the largest flowers in the world.

"We found that several dozen actively transcribed genes likely originated from the flower's host," said Zhenxiang Xi, a graduate student in Davis' lab, and first author of the paper. "In addition, we found evidence that about one third of the parasites own vertically inherited genes have evolved to be more like those of hosts, suggesting that there might be a fitness benefit to maintaining genes that are more host-like."

"At the outset, we wondered if it could be that a subset of these genes might provide some defense from the host mounting an attack," Davis added. "However, the genes coming to the flowers represent a broad swath of functions, including respiration, metabolism and perhaps some useful for defense. If so, these findings might reflect a sort of genomic camouflage, or genomic mimicry for the parasite."

The new paper builds on research Davis conducted in 2004, just before coming to Harvard, which focused on understanding the evolutionary origins of such "extremeophiles."

"For years, these plants have been something of an evolutionary mystery, because they simply don't possess the genetic toolkit - primarily the genes associated with photosynthesis -- that evolutionary biologists have used to place them on the broader tree of life," Davis said. "These plants have reduced themselves so much, they've actually lost many of the genes associated with photosynthesis."

Using newly developed genomic tools, he identified the plants that are the closest relatives of the enormous flowers, but also stumbled into something surprising -- a single region in the flower's genetic code that was more like its host than itself.

The realization that the flowers and vines appeared to be related, Davis said, was a "eureka moment."

"These species are quite evolutionarily diverged from one another, yet they have a very close, intimate physical proximity," he said. "The parasite literally cannot live without being inside the host. Our study was one of the first to show that parasitic systems characterized by close physical contact are an area where horizontal gene transfer is taking place."

Knowing that horizontal gene transfer was happening, however, was only part of the story. Left unanswered, he said, were questions about the magnitude of these transfers, what type of genes were moving, whether those genes were functional in the flowers, and to what extent vertically inherited genes may have been replaced by horizontally acquired ones.

"Following the 2004 study, there was a great deal of momentum behind the idea that the parasite-host relationship was a hotbed of activity for horizontal gene transfer," Davis said. "But no one had tackled this question in a broad systematic way. Our paper was the first to hit this problem, and what we found was is gene transfer is indeed prevalent in these parasites, and that some of those genes are likely functional."

Davis' research didn't stop at the genes the flowers adopted from their host. In examining the vertically inherited genes of the parasite- that is, those inherited from a parent - they found that the molecular coding between the parasites were strikingly similar to those of its host. Put simply, he said, the flowers are "learning to speak the genetic language" of their hosts, and not simply acquiring their genes.

"What we think is that the genes in the parasite are independently converging on the genetic coding of the host," he said. "Of course, in this case it's more likely easier to acquire genes through horizontal gene transfer if your own genetic machinery is more like your host, but when we started to find these patterns, it amazed me. If true, it's a pretty diabolical strategy on the part of the parasite."


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhenxiang Xi, Robert K Bradley, Kenneth J Wurdack, K.M. Wong, M. Sugumaran, Kirsten Bomblies, Joshua S Rest and Charles C Davis. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics, 2012 DOI: 10.1186/1471-2164-13-227

Cite This Page:

Harvard University. "Stealing life's building blocks." ScienceDaily. ScienceDaily, 6 June 2012. <www.sciencedaily.com/releases/2012/06/120606155810.htm>.
Harvard University. (2012, June 6). Stealing life's building blocks. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/06/120606155810.htm
Harvard University. "Stealing life's building blocks." ScienceDaily. www.sciencedaily.com/releases/2012/06/120606155810.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Parasitic Plants Steal Genes from Their Hosts

June 8, 2012 The Malaysian parasitic plant Rafflesia cantleyi, with its 50cm diameter flowers, has 'stolen' genes from its host Tetrastigma rafflesiae. Analysis of these genes shows that their functions ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins