Science News
from research organizations

Jekyll and Hyde bacteria helps or kills, depending on chance

Date:
July 5, 2012
Source:
Michigan State University
Summary:
Living in the guts of worms are seemingly innocuous bacteria that contribute to their survival. With a flip of a switch, however, these same bacteria transform from harmless microbes into deadly insecticides. Scientists have revealed how a bacteria flips a DNA switch to go from an upstanding community member in the gut microbiome to deadly killer in insect blood.
Share:
       
FULL STORY

Jekyll and Hyde bacteria live and thrive in the guts of worms.
Credit: Photo courtesy of Alex Martin.

Living in the guts of worms are seemingly innocuous bacteria that contribute to their survival. With a flip of a switch, however, these same bacteria transform from harmless microbes into deadly insecticides.

In the current issue of Science, Michigan State University researchers led a study that revealed how a bacteria flips a DNA switch to go from an upstanding community member in the gut microbiome to deadly killer in insect blood.

Todd Ciche, assistant professor of microbiology and molecular genetics, has seen variants like this emerge sometimes by chance resulting in drastically different properties, such as being lethal to the host or existing in a state of mutual harmony. Even though human guts are more complex and these interactions are harder to detect, the revelation certainly offers new insight that could lead to medical breakthroughs, he said.

"Animal guts are similar to ours, in that they are both teeming with microbes," said Ciche, who worked with researchers from Harvard Medical School. "These bacteria and other microorganisms are different inside their hosts than isolated in a lab, and we're only beginning to learn how these alliances with microbes are established, how they function and how they evolve."

The bacteria in question are bioluminescent insect pathogens. In their mutualistic state, they reside in the intestines of worms, growing slowly and performing other functions that aid nematode's survival, even contributing to reproduction.

As the nematodes grow, the bacteria reveal their dark side. They flip a DNA switch and arm themselves by growing rapidly and producing deadly toxins. When the worms begin infesting insects, they release their bacterial insecticide.

"It's like fleas teaming up with the plague," Ciche said.

The question remains: What causes this dramatic transformation?

"If we can figure out why the DNA turns on and off to cause the switch between Jekyll and Hyde, we can better understand how bacteria enter stages of dormancy and antibiotic tolerance -- processes critical to treating chronic infections," Ciche said.

Part of Ciche's research is funded by MSU AgBioResearch. Additional MSU researchers who contributed to this study include Rudolph Sloup, Alexander Martin, Anthony Heidt and Kwi-suk Kim. Scientists from the University of California-San Diego, Harvard Medical School and Yale University also contributed to this study.


Story Source:

The above post is reprinted from materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vishal S. Somvanshi, Rudolph E. Sloup, Jason M. Crawford, Alexander R. Martin, Anthony J. Heidt, Kwi-suk Kim, Jon Clardy, and Todd A. Ciche. A Single Promoter Inversion Switches Photorhabdus Between Pathogenic and Mutualistic States. Science, 6 July 2012: 88-93 DOI: 10.1126/science.1216641

Cite This Page:

Michigan State University. "Jekyll and Hyde bacteria helps or kills, depending on chance." ScienceDaily. ScienceDaily, 5 July 2012. <www.sciencedaily.com/releases/2012/07/120705194134.htm>.
Michigan State University. (2012, July 5). Jekyll and Hyde bacteria helps or kills, depending on chance. ScienceDaily. Retrieved July 5, 2015 from www.sciencedaily.com/releases/2012/07/120705194134.htm
Michigan State University. "Jekyll and Hyde bacteria helps or kills, depending on chance." ScienceDaily. www.sciencedaily.com/releases/2012/07/120705194134.htm (accessed July 5, 2015).

Share This Page: