Featured Research

from universities, journals, and other organizations

Turbo switch of calcium pump in biological cells discovered

Date:
October 21, 2012
Source:
Helmholtz Association of German Research Centres
Summary:
Scientists have discovered a turbo switch in the vital calcium pump in our body's cells. Researchers discovered that the on-off switch of the pump has a previously unknown third position, which switches the pump into a turbo gear.

A Danish-British research team has discovered a turbo switch in the vital calcium pump in our body's cells. In studies at the X-ray source DORIS at Deutsches Elektronen-Synchrotorn DESY in Hamburg and the European Synchrotron Radiation Facility ESRF in Grenoble the team discovered that the on-off switch of the pump has a previously unknown third position, which switches the pump into a turbo gear.

The group of Henning Tidow from Aarhus University and Lisbeth Poulsen from the University of Copenhagen published its studies in the British journal Nature. "The discovery not only improves our understanding of a fundamental mechanism in the biology of all higher organisms, but could one day allow for better treatment of certain diseases in which the calcium balance is disturbed," says Tidow. The researchers used the measuring station of the European Molecular Biology Laboratory EMBL at DORIS.

The element calcium plays a central role in many processes of life, such as cell division, the day-night cycle and the communication of cells. The decisive factor is a gradient in the calcium concentration, which is normally high outside the cell and low inside it. This gradient is maintained among others through a calcium pump, which occurs in all higher organisms (eukaryotes) -- from the nettle to the blue whale. For example, under stress the calcium concentration in the cell increases and triggers a corresponding reaction. Afterwards, the concentration must be lowered again.

"The calcium transport from the cell requires a lot of energy. It is therefore important that the pump is activated only when needed," explains Poulsen. The pump -- known as PMCA (plasma-membrane calcium-ATPase) -- thus has a switch, which is actuated by the protein calmodulin. When calcium binds to calmodulin, the latter changes its shape so that it can dock onto a binding site of the cell's calcium pump, thereby activating the pump. When the calcium concentration in the cell increases, more and more pumps are thus switched on.

The researchers led by Tidow viewed the entire switching complex with X-rays to reveal its molecular structure. They chose the switching complex from cells of the plant thale cress (Arabidopsis thaliana), studying it first in crystal form and then in solution, which is closer to the natural environment of the molecule. "Based on this analysis, we were able to create a detailed three-dimensional model of the region of the calcium pump that interacts with calmodulin," says Tidow. "To our great surprise, we found that the calcium pump has two binding sites for calmodulin and not just one as previously thought."

The switching complex thus consists of a dumbbell-like structure with two calmodulin binding sites. To determine whether the second site has a biological significance, the researchers tested pumps in which they had disabled one switch. Indeed, these pumps could not run at full power. "Our results show that the calcium pump is controlled in three steps," explains Poulsen. "It is switched off when no calmodulin is bound to the switching complex. The pump is running at medium speed as soon as one binding site is occupied, and at full speed when calmodulin is bound to both sites."

The pump is thus activated step by step, depending on how much calcium is present in the cell. When the calcium concentration increases, the pump first operates in an energy-efficient way at moderate speed. If the calcium threatens to reach an amount that is dangerous for the cell, the pump changes into the turbo gear, which enables it to very quickly reduce the concentration.

Bioinformatics analyses revealed that this double switch occurs not only in all plant species, but in general in all cells with a nucleus (eukaryotes). "This study underscores the strength of integrating structural biology in interdisciplinary research," underlines Poul Nissen of Aarhus University. As the next step, the researchers aim to decipher the structure of the entire calcium pump.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Henning Tidow, Lisbeth R. Poulsen, Antonina Andreeva, Michael Knudsen, Kim L. Hein, Carsten Wiuf, Michael G. Palmgren, Poul Nissen. A bimodular mechanism of calcium control in eukaryotes. Nature, 2012; DOI: 10.1038/nature11539

Cite This Page:

Helmholtz Association of German Research Centres. "Turbo switch of calcium pump in biological cells discovered." ScienceDaily. ScienceDaily, 21 October 2012. <www.sciencedaily.com/releases/2012/10/121021133918.htm>.
Helmholtz Association of German Research Centres. (2012, October 21). Turbo switch of calcium pump in biological cells discovered. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/10/121021133918.htm
Helmholtz Association of German Research Centres. "Turbo switch of calcium pump in biological cells discovered." ScienceDaily. www.sciencedaily.com/releases/2012/10/121021133918.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins