Featured Research

from universities, journals, and other organizations

Heading for regeneration: Researchers reactivate head regeneration in regeneration-deficient species of planarians

Date:
July 24, 2013
Source:
Max-Planck-Gesellschaft
Summary:
Rabbits can't do it, neither can frogs, but zebrafish and axolotls can and flatworms are true masters of the craft: regeneration. Why some animals can re-grow lost body parts or organs while others cannot remains a big mystery. And even more intriguing to us regeneration-challenged humans is the question whether one might be able to activate regenerative abilities in species that don't usually regenerate.

The planarian species Dendrocoeulum lacteum is incapable of regenerating a lost head. This sample however was genetically modified – head regrowth was reactivated.
Credit: © MPI-CBG

Rabbits can't do it, neither can frogs, but zebrafish and axolotls can and flatworms are true masters of the craft: regeneration. Why some animals can re-grow lost body parts or organs while others cannot remains a big mystery. And even more intriguing to us regeneration-challenged humans is the question whether one might be able to activate regenerative abilities in species that don't usually regenerate.

Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden are now one step further in understanding the factors that regulate regeneration. They discovered a crucial molecular switch in the flatworm Dendrocoelum lacteum that decides whether a lost head can be regenerated or not. And what is even more spectacular: The scientists manipulated the genetic circuitry of the worm in such a way as to fully restore its regeneration potential.

In his lab, Jochen Rink, research group leader at the MPI-CBG, usually studies the flatworm species Schmidtea mediterranea. It is known for its excellent regenerative abilities and thus a popular model species in regeneration research: "We can cut the worm to 200 pieces, and 200 new worms will regenerate from each and every piece," Rink explains. Now, for a change, Rink and colleagues brought a different beast into the lab, the flatworm Dendrocoelum lacteum. Even though a close cousin of the regeneration master S. mediterranea, this species had been reported to be incapable of regenerating heads from its posterior body half. "What's the salient difference between the two cousins," the researcher asked?

Together with researchers from the Center for Regenerative Therapies Dresden Rink's team searched for an answer amongst the genes of the two species, focusing on the so-called Wnt-signaling pathway. Like a cable link between two computers, signalling pathways transmit information between cells. The Dresden researchers inhibited the signal transducer of the Wnt pathway with RNAi and thus made the cells of the worm believe that the signalling pathway had been switched to "off." Consequently, Dendrocoelum lacteum were able to grow a fully functional head everywhere, even when cut at the very tail.

Re-building a head complete with brain, eyes and all the wiring in between is evidently complicated business. However, as the study showed, regeneration defects are not necessarily irreversible. Jochen Rink is stunned: "We thought we would have to manipulate hundreds of different switches to repair a regeneration defect; now we learned that sometimes only a few nodes may do." Will this knowledge soon be applicable to more complex organisms -- like humans, for example? "We showed that by comparisons amongst related species we can obtain insights into why some animals regenerate while others don't -- that's an important first step."


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. S.-Y. Liu, C. Selck, B. Friedrich, R. Lutz, M. Vila-Farrι, A. Dahl, H. Brandl, N. Lakshmanaperumal, I. Henry, J. C. Rink. Reactivating head regrowth in a regeneration-deficient planarian species. Nature, 2013; DOI: 10.1038/nature12414

Cite This Page:

Max-Planck-Gesellschaft. "Heading for regeneration: Researchers reactivate head regeneration in regeneration-deficient species of planarians." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724134019.htm>.
Max-Planck-Gesellschaft. (2013, July 24). Heading for regeneration: Researchers reactivate head regeneration in regeneration-deficient species of planarians. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/07/130724134019.htm
Max-Planck-Gesellschaft. "Heading for regeneration: Researchers reactivate head regeneration in regeneration-deficient species of planarians." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724134019.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) — Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins