Featured Research

from universities, journals, and other organizations

Fish skin immune responses resemble those of the gut

Date:
September 13, 2013
Source:
University of Pennsylvania
Summary:
A new study has found that, not only does fish skin resemble the gut morphologically, but key components of skin immune responses are also akin to those of the gut.

IgT (green) surrounds a ghost-like trout skin parasite (pink).
Credit: Image courtesy of D. G. Atria and J. O. Sunyer.

Fish skin is unique in that it lacks keratin, the fibrous protein found in mammalian skin that provides a barrier against the environment. Instead, the epithelial cells of fish skin are in direct contact with the immediate environment: water. Similarly, the epithelial cells that line the gastrointestinal tract are also in direct contact with their immediate milieu.

"I like to think of fish as an open gut swimming," said J. Oriol Sunyer, a professor in the the Department of Pathobiology of the University of Pennsylvania School of Veterinary Medicine.

Building on this observation, a study led by Sunyer's group at Penn Vet found that, not only does fish skin resemble the gut morphologically, but that key components of skin immune responses are also akin to those of the gut.

"In fish, the skin and the gut have much in common: they are both constantly exposed to environmental insults, they both have a large and varied microbiota and they both contain mucosal surfaces," Sunyer said. "So we hypothesized that the skin should have a similar immune response to the gut, and this is indeed what we found."

The results, published in the journal PNAS, not only are of interest on the level of basic science and evolution but have important implications for the way that fish vaccines will be designed and tested, as a large number of fish pathogens enter through the skin.

The study was recently featured in the "highlights" section of the September issue of Nature Reviews Immunology, which described it as providing "a fascinating insight into the evolutionary origins of mucosal immune [defenses.]"

The current work is based on a 2010 finding from Sunyer's lab, published in Nature Immunology. In that study, scientists reported for the first time that rainbow trout produce an antibody known as IgT in their gut. This immunoglobulin is responsible for gut mucosal immunity. The equivalent antibody in mammals is IgA.

Because of the similarities between a fish's gut and skin, Sunyer's team went on the hunt for IgT in the skin tissue of rainbow trout. When they examined B cells, which produce immunoglobulins in response to foreign invaders, such as parasites and bacteria, they found that the majority of B cells in the skin were expressing IgT, suggesting that this immunoglobulin was playing an important role there.

Next the researchers took a closer look at the bacterial community, or microbiota, living on the trout's skin. In mammals and birds, IgA has been found to help prevent the "friendly" bacteria of the gut microbiota from invading the body and causing illness, leading Sunyer's team to hypothesize that IgT might be playing a parallel role in the skin of fish. In addition, earlier work by Sunyer's team found IgT coating bacteria in the intestinal microbiota.

In the current study, when the researchers examined the skin microbiota, they found that a significantly higher percentage of bacteria were coated by IgT than by IgM, another fish immunoglobulin. More critically, greater than 50 percent of the IgT present in the skin mucus was involved in coating bacteria. These findings suggest that IgT is involved in regulating host-microbiota homeostasis; in other words, IgT appears to play a role in maintaining a stable relationship between the fish and the bacterial community living in its skin.

To see how IgT functioned in response to infectious agents, the researchers exposed trout to a parasite that causes white spot disease, a common affliction that targets the skin of farmed, wild and aquarium fish. Compared with uninfected fish, infected fish that survived parasite exposure had many more IgT-producing B cells than IgM-producing B cells in their skin. Moreover, the skin mucus of surviving fish contained only IgT but not IgM, which specifically recognized the parasite. Conversely, IgM represented the main parasite-specific immunoglobulin in the serum of these animals. Taken together, these results demonstrate that IgT is the pivotal skin immunoglobulin generated in response to pathogenic infection.

According to Sunyer, the parallel immune responses in the fish gut and skin are likely the result of these body areas having been subjected to very similar evolutionary selective forces. They also appear to represent an example of convergent evolution with the IgA-mediated mucosal immunity in mammals. In conjunction with earlier work from Sunyer and others, the findings underline that many aspects of mucosal immune responses of fish and mammals operate under the guidance of primordially conserved principles, thus demonstrating the value of bony fish as model organisms.

"Discoveries we make in fish about the fundamental mechanisms of mucosal immunity may help us come up with paradigms of immunity in mammals that are yet to be discovered," Sunyer said. "There is a very important translational component."

The work could also help pave the way for improved fish vaccines -- important tools in the burgeoning aquaculture industry.

"The skin is a very important portal for fish pathogens," Sunyer said. "Now that we are starting to understand how mucosal immunity works in the skin and that IgT is the key immunoglobulin there, we can target it and evaluate it when designing new vaccines."

Moving forward, Sunyer's team plans to examine how fish skin's microbiota regulates skin immunity as well as the role of IgT in influencing host-microbiota homeostasis. They also seek to develop new vaccine strategies that will induce IgT immune and protective responses in the skin and other mucosal body parts.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Xu, D. Parra, D. Gomez, I. Salinas, Y.-A. Zhang, L. von Gersdorff Jorgensen, R. D. Heinecke, K. Buchmann, S. LaPatra, J. O. Sunyer. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences, 2013; 110 (32): 13097 DOI: 10.1073/pnas.1304319110

Cite This Page:

University of Pennsylvania. "Fish skin immune responses resemble those of the gut." ScienceDaily. ScienceDaily, 13 September 2013. <www.sciencedaily.com/releases/2013/09/130913195057.htm>.
University of Pennsylvania. (2013, September 13). Fish skin immune responses resemble those of the gut. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/09/130913195057.htm
University of Pennsylvania. "Fish skin immune responses resemble those of the gut." ScienceDaily. www.sciencedaily.com/releases/2013/09/130913195057.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins