Featured Research

from universities, journals, and other organizations

Keeping stem cells pluripotent

Date:
January 13, 2014
Source:
University of California, San Diego Health Sciences
Summary:
In a paper published, researchers identify a key gene receptor and signaling pathway essential maintaining hESCs in an undifferentiated state.

While the ability of human embryonic stem cells (hESCs) to become any type of mature cell, from neuron to heart to skin and bone, is indisputably crucial to human development, no less important is the mechanism needed to maintain hESCs in their pluripotent state until such change is required.

Related Articles


In a paper published in this week's Online Early Edition of PNAS, researchers from the University of California, San Diego School of Medicine identify a key gene receptor and signaling pathway essential to doing just that -- maintaining hESCs in an undifferentiated state.

The finding sheds new light upon the fundamental biology of hESCs -- with their huge potential as a diverse therapeutic tool -- but also suggests a new target for attacking cancer stem cells, which likely rely upon the same receptor and pathway to help spur their rampant, unwanted growth.

The research, led by principal investigator Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, focuses upon the role of the highly conserved WNT signaling pathway, a large family of genes long recognized as a critical regulator of stem cell self-renewal, and a particular encoded receptor known as frizzled family receptor 7 or FZD7.

"WNT signaling through FZD7 is necessary to maintain hESCs in an undifferentiated state," said Willert. "If we block FZD7 function, thus interfering with the WNT pathway, hESCs exit their undifferentiated and pluripotent state."

The researchers proved this by using an antibody-like protein that binds to FZD7, hindering its function. "Once FZD7 function is blocked with this FZD7-specific compound, hESCs are no longer able to receive the WNT signal essential to maintaining their undifferentiated state."

FZD7 is a so-called "onco-fetal protein," expressed only during embryonic development and by certain human tumors. Other studies have suggested that FZD7 may be a marker for cancer stem cells and play an important role in promoting tumor growth. If so, said Willert, disrupting FZD7 function in cancer cells is likely to interfere with their development and growth just as it does in hESCs.


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Fernandez, I. J. Huggins, L. Perna, D. Brafman, D. Lu, S. Yao, T. Gaasterland, D. A. Carson, K. Willert. The WNT receptor FZD7 is required for maintenance of the pluripotent state in human embryonic stem cells. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1323697111

Cite This Page:

University of California, San Diego Health Sciences. "Keeping stem cells pluripotent." ScienceDaily. ScienceDaily, 13 January 2014. <www.sciencedaily.com/releases/2014/01/140113163656.htm>.
University of California, San Diego Health Sciences. (2014, January 13). Keeping stem cells pluripotent. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/01/140113163656.htm
University of California, San Diego Health Sciences. "Keeping stem cells pluripotent." ScienceDaily. www.sciencedaily.com/releases/2014/01/140113163656.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins