Featured Research

from universities, journals, and other organizations

Calico cats inspire X chromosome research

Date:
February 18, 2014
Source:
Biophysical Society
Summary:
Calico cats, renowned and beloved for their funky orange and black patchwork or "tortoiseshell" fur, can thank X chromosome inactivation or "silencing" for their unique look. Researchers are striving to unlock the mystery of how one X chromosome can be rendered nearly completely inactive.

This image shows the first ever high-resolution structure of an inactive X chromosome (far right) its native state by combining a new pair of emerging imaging technologies.
Credit: E.A.Smith/UCSF

Calico cats, renowned and beloved for their funky orange and black patchwork or "tortoiseshell" fur, can thank X chromosome inactivation or "silencing" for their unique look.

A team of University of California San Francisco (UCSF) researchers is striving to unlock the mystery of how one X chromosome can be rendered nearly completely inactive. They will present their latest results at the 58th Annual Biophysical Society Meeting, which takes place Feb. 15-19, 2014, in San Francisco, Calif.

The cells of female mammals contain two copies of the X chromosome, one each from mom and dad, but because cells only need one active X, the other one is "turned off." Calico cats have an orange fur color gene on one of their X chromosomes and a black fur color gene on the other, so that the random silencing of one of the X's in each cell creates their distinctive patchwork coats. But while such manifestations of X chromosome inactivation have long been observed, researchers are still unclear of exactly how a cell silences a chromosome.

The UCSF researchers approached this mystery by first finding a way to image the X chromosome in its natural position within an intact cell. "A cell's nucleus contains the genetic code, its DNA. But while the structure of the DNA was determined more than 50 years ago, and we're rapidly determining the position of specific genes on chromosomes, no one had visualized the DNA within an intact nucleus -- an unfixed, hydrated whole cell," explained Elizabeth Smith. "We decided to try."

Smith is a postdoctoral fellow working in Carolyn Larabell's lab in the Anatomy Department at UCSF. Larabell is the director of the National Center for X-Ray Tomography, which is where the instrument development is taking place.

The work could eventually help researchers better understand how many different kinds of genes can be turned on or off without altering the underlying DNA sequence. "The inactivation of one out of two X chromosomes in females is an enormously important epigenetic process," said Smith. "Uncovering how only one X chromosome is inactivated will help explain the whole process of epigenetic control, meaning the way changes in gene activity can be inherited without changing the DNA code. It can help answer other questions such as if and how traits like obesity can be passed down through generations."

To visualize the DNA within an intact nucleus, Smith and colleagues turned to a novel imaging technology, soft x-ray tomography. "We obtained high-resolution, 3-dimensional views of the intact nucleus and, by using a prototype cryo fluorescence microscope along with the x-ray microscope, we were able to identify one specific chromosome, the inactive X chromosome of female cells," Smith said.

The team imaged and analyzed the inactive X chromosome in a number of different cells and was surprised by the wide variation in the structural organization adopted by the chromosome. "We were able to show a remarkable substructural organization of this chromosome, which consists of three distinct domains of differing amounts of chromatin," said Smith.

To obtain their results the researchers developed a new "correlated imaging" technique. This new form of microscopy has a wide range of possible future applications, particularly to identify the position of specific molecules within the densely packed environment of the nucleus. "With new fluorescent probes, we can start identifying the position of specific genes in context -- inside the tangled network of DNA within the intact nucleus," Smith explained.

While this work is still at the basic research stage, it shows potential to have a significant impact on understanding, diagnosing, and treating X-chromosome-linked diseases in the future.

Link to NIH X chromosome information: ghr.nlm.nih.gov/chromosome/X


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Calico cats inspire X chromosome research." ScienceDaily. ScienceDaily, 18 February 2014. <www.sciencedaily.com/releases/2014/02/140218142249.htm>.
Biophysical Society. (2014, February 18). Calico cats inspire X chromosome research. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2014/02/140218142249.htm
Biophysical Society. "Calico cats inspire X chromosome research." ScienceDaily. www.sciencedaily.com/releases/2014/02/140218142249.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins