Featured Research

from universities, journals, and other organizations

Hide and seek: Revealing camouflaged bacteria

Date:
April 16, 2014
Source:
University of Basel
Summary:
A protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells has been discovered by researchers. The so called interferon-induced GTPases reveal and eliminate the bacterium's camouflage in the cell, enabling the cell to recognize the pathogen and to render it innocuous.

GTPases (green) attack Salmonella typhimurium (red).
Credit: University of Basel, Biozentrum

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so called interferon-induced GTPases reveal and eliminate the bacterium's camouflage in the cell, enabling the cell to recognize the pathogen and to render it innocuous. The findings are published in the current issue of the science magazine Nature.

Related Articles


Bacteria have developed countless strategies to hide themselves in order to evade attack by the immune system. In the body, Salmonella bacteria use macrophages as host cells to ensure their survival and to be able to spread within the body. Their survival strategy is to nestle into a vacuole within the cytoplasm of a macrophage, hiding there and multiplying. While they are hidden there, the immune cells cannot detect the bacteria and fight them.

Exposure: GTPases destroy Salmonella's hideout

The macrophages, in which the Salmonella hide, however, have also developed a strategy to unmask the disguise of the bacterium and uncover its hiding place. Prof. Petr Broz's research group at the Biozentrum of the University of Basel has discovered a protein family called interferon-induced GTPases in host cells invaded by Salmonella. "They are responsible for destroying the hiding place of the pathogen and to initiate the immune response of the cell," explains Etienne Meunier, first author of the publication.

Destruction: Kick-off for attacking the bacteria

Once the hiding place has been discovered, GTPases are transported to the vacuole and destabilize its membrane. The bacteria are left behind unprotected in the cytoplasm where their surface molecules are easily recognized by the intracellular defense. "The GTPases are the key to the hiding place of the bacteria. Once the door has been opened and the protective vacuole destroyed, there is no escape. The bacteria are immediately exposed to the defense machinery of the cell," says Meunier. Receptors in the cell identify the pathogen, which then activate special cellular enzymes to destroy the bacteria. In addition, the cells own proteases, so-called caspases, are activated and trigger cell death of the infected host cell.

Salmonella still remain a feared pathogenic agent, as they can cause life threatening diarrheal disease. The findings of Broz and his team enable the better understanding of the strategies of the immune cells and to perhaps model this in the future. The deeper understanding of the immune response of our cells also paves the way for new approaches in using drugs to support the body's fight against pathogens. In order to further elucidate the mechanisms of the immune response to Salmonella infections, the research team plans to investigate how cells detect the hiding place of the bacteria, the vacuole in the cytoplasm of the macrophages, and what initiates the recruitment of GTPases to the vacuole.


Story Source:

The above story is based on materials provided by University of Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Etienne Meunier, Mathias S. Dick, Roland F. Dreier, Nura Schόrmann, Daniela Kenzelmann Broz, Sψren Warming, Merone Roose-Girma, Dirk Bumann, Nobuhiko Kayagaki, Kiyoshi Takeda, Masahiro Yamamoto, Petr Broz. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature, 2014; DOI: 10.1038/nature13157

Cite This Page:

University of Basel. "Hide and seek: Revealing camouflaged bacteria." ScienceDaily. ScienceDaily, 16 April 2014. <www.sciencedaily.com/releases/2014/04/140416133338.htm>.
University of Basel. (2014, April 16). Hide and seek: Revealing camouflaged bacteria. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2014/04/140416133338.htm
University of Basel. "Hide and seek: Revealing camouflaged bacteria." ScienceDaily. www.sciencedaily.com/releases/2014/04/140416133338.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins