Featured Research

from universities, journals, and other organizations

Hide and seek: Revealing camouflaged bacteria

Date:
April 16, 2014
Source:
University of Basel
Summary:
A protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells has been discovered by researchers. The so called interferon-induced GTPases reveal and eliminate the bacterium's camouflage in the cell, enabling the cell to recognize the pathogen and to render it innocuous.

GTPases (green) attack Salmonella typhimurium (red).
Credit: University of Basel, Biozentrum

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so called interferon-induced GTPases reveal and eliminate the bacterium's camouflage in the cell, enabling the cell to recognize the pathogen and to render it innocuous. The findings are published in the current issue of the science magazine Nature.

Bacteria have developed countless strategies to hide themselves in order to evade attack by the immune system. In the body, Salmonella bacteria use macrophages as host cells to ensure their survival and to be able to spread within the body. Their survival strategy is to nestle into a vacuole within the cytoplasm of a macrophage, hiding there and multiplying. While they are hidden there, the immune cells cannot detect the bacteria and fight them.

Exposure: GTPases destroy Salmonella's hideout

The macrophages, in which the Salmonella hide, however, have also developed a strategy to unmask the disguise of the bacterium and uncover its hiding place. Prof. Petr Broz's research group at the Biozentrum of the University of Basel has discovered a protein family called interferon-induced GTPases in host cells invaded by Salmonella. "They are responsible for destroying the hiding place of the pathogen and to initiate the immune response of the cell," explains Etienne Meunier, first author of the publication.

Destruction: Kick-off for attacking the bacteria

Once the hiding place has been discovered, GTPases are transported to the vacuole and destabilize its membrane. The bacteria are left behind unprotected in the cytoplasm where their surface molecules are easily recognized by the intracellular defense. "The GTPases are the key to the hiding place of the bacteria. Once the door has been opened and the protective vacuole destroyed, there is no escape. The bacteria are immediately exposed to the defense machinery of the cell," says Meunier. Receptors in the cell identify the pathogen, which then activate special cellular enzymes to destroy the bacteria. In addition, the cells own proteases, so-called caspases, are activated and trigger cell death of the infected host cell.

Salmonella still remain a feared pathogenic agent, as they can cause life threatening diarrheal disease. The findings of Broz and his team enable the better understanding of the strategies of the immune cells and to perhaps model this in the future. The deeper understanding of the immune response of our cells also paves the way for new approaches in using drugs to support the body's fight against pathogens. In order to further elucidate the mechanisms of the immune response to Salmonella infections, the research team plans to investigate how cells detect the hiding place of the bacteria, the vacuole in the cytoplasm of the macrophages, and what initiates the recruitment of GTPases to the vacuole.


Story Source:

The above story is based on materials provided by University of Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Etienne Meunier, Mathias S. Dick, Roland F. Dreier, Nura Schόrmann, Daniela Kenzelmann Broz, Sψren Warming, Merone Roose-Girma, Dirk Bumann, Nobuhiko Kayagaki, Kiyoshi Takeda, Masahiro Yamamoto, Petr Broz. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature, 2014; DOI: 10.1038/nature13157

Cite This Page:

University of Basel. "Hide and seek: Revealing camouflaged bacteria." ScienceDaily. ScienceDaily, 16 April 2014. <www.sciencedaily.com/releases/2014/04/140416133338.htm>.
University of Basel. (2014, April 16). Hide and seek: Revealing camouflaged bacteria. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/04/140416133338.htm
University of Basel. "Hide and seek: Revealing camouflaged bacteria." ScienceDaily. www.sciencedaily.com/releases/2014/04/140416133338.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins