Featured Research

from universities, journals, and other organizations

New method provides researchers with efficient tool for tagging proteins

Date:
July 29, 2014
Source:
Aarhus University
Summary:
With a new method, researchers use a piece of DNA engineered to bind to metal ions. Using this 'control stick,' they direct another piece of DNA to a metal binding site on the protein. The new method makes it possible to direct the tagging of proteins with DNA to a particular site on the protein, without genetically modifying the protein beforehand. In other words, it is possible to tag natural proteins, including antibodies.

DNA linked to proteins -- including antibodies -- provides a strong partnership that can be used in diagnostic techniques, nanotechnology and other disciplines. DNA-protein conjugates -- which tag proteins with DNA -- can be used for purposes such as the sensitive detection and visualisation of biological material. The method also provides easier access to handling proteins in nanotechnology, where the DNA acts as a handle on the protein.

Related Articles


Controlling the conjugation of macromolecules such as DNA and proteins can be quite a challenge when scientists want to join them in particular ways and places. Researchers at Aarhus University have now developed a new and efficient method to tag proteins with DNA, making it much simpler to control the process than previously. The new method was developed at the Danish National Research Foundation's Centre for DNA Nanotechnology (CDNA) in collaboration between researchers at Aarhus University's Interdisciplinary Nanoscience Centre (iNANO), Department of Chemistry and Department of Molecular Biology and Genetics. The work is described in the highly scientific journal Nature Chemistry.

"Maintaining the protein's function and activity often requires the attachment of only a single DNA strand to the protein. At the same time, it can be important to know where the DNA strand is attached to the protein. You can normally only achieve this if you are working with genetically engineered proteins. This is a time-consuming and technically challenging process," explains PhD student Christian B. Rosen, CDNA, Aarhus University -- one of the researchers behind the new method.

The new method makes it possible to direct the tagging of proteins with DNA to a particular site on the protein, without genetically modifying the protein beforehand. In other words, it is possible to tag natural proteins, including antibodies.

The researchers use a piece of DNA that is engineered to bind to metal ions. Using this 'control stick', they direct another piece of DNA to a metal binding site on the protein, where it reacts. A considerable number of proteins bind metal ions, which makes them suitable for this method. A significant point in using this method is that the tagged proteins retain their functionality after being bound to DNA.

The researchers are applying for a patent for the new method, which has potential in a number of areas.

"Of greatest importance is the fact that we can use our technique for tagging antibodies. Antibodies that are chemically bound (conjugated) to chemotherapeutics represent an entirely new class of medicine in which the antibody part is used to recognise specific tissue and the chemotherapeutic part is used to kill the cell. When you tag antibodies, it's important that you keep the recognition element of the antibody intact. With our method, we strike the constant part of the antibody and not the variable part, which contains its recognition element. Our technique is therefore general for a major class of proteins," explains Anne Louise Bank Kodal, CDNA, another author of the article.

The researchers are working on further developing the method so they can attach chemotherapeutics to antibodies and not just DNA.


Story Source:

The above story is based on materials provided by Aarhus University. The original article was written by Janne Hansen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christian B. Rosen, Anne L. B. Kodal, Jesper S. Nielsen, David H. Schaffert, Carsten Scavenius, Anders H. Okholm, Niels V. Voigt, Jan J. Enghild, Jψrgen Kjems, Thomas Tψrring, Kurt V. Gothelf. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins. Nature Chemistry, 2014; DOI: 10.1038/nchem.2003

Cite This Page:

Aarhus University. "New method provides researchers with efficient tool for tagging proteins." ScienceDaily. ScienceDaily, 29 July 2014. <www.sciencedaily.com/releases/2014/07/140729093116.htm>.
Aarhus University. (2014, July 29). New method provides researchers with efficient tool for tagging proteins. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/07/140729093116.htm
Aarhus University. "New method provides researchers with efficient tool for tagging proteins." ScienceDaily. www.sciencedaily.com/releases/2014/07/140729093116.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins