New! Sign up for our free email newsletter.
Science News
from research organizations

Autopilot Guides Proteins In Brain

Date:
April 27, 2009
Source:
University of Southern California
Summary:
Proteins go everywhere in the cell and do all sorts of work, but a fundamental question has eluded biologists: how do the proteins know where to go? A new study offers one answer.
Share:
FULL STORY

Proteins go everywhere in the cell and do all sorts of work, but a fundamental question has eluded biologists: How do the proteins know where to go?

“There’s no little man sitting there, putting the protein in the right place,” said Don Arnold, a molecular and computational biologist at USC College.

“Proteins have to have in them encoded information that tells them where to go in the cell.”

In a study appearing online this week in Nature Neuroscience, Arnold and collaborators solve the mystery for key proteins in the brain.

Neurons have separate structures for receiving signals (dendrites) and for sending them (axons). The electrical properties of each depend on different proteins. But the proteins travel in bubbles, or vesicles, powered by motors known as kinesins that travel along tiny molecular paths.

Even though the paths point to both axons and dendrites, dendritic proteins end up in dendrites, and axonal proteins go to the axons. How?

Arnold’s group discovered a crude but effective sorting mechanism. At first, kinesins blindly carry both types of proteins towards the axon.

However, dendritic proteins enable the vesicles transporting them to bind to a second motor, known as myosin, that literally walks them back into the dendrite.

This filter ensures that only axonal proteins make it into the axon. The others are caught by the second motor and diverted to the dendrite.

“This mechanism fishes these things out of the axon,” Arnold said.

Once in the dendrite, the proteins either land in a place where they can do their electrical work or they move back towards the axon, only to be fished out again.

On its face, the process is inefficient, Arnold said, “but it is very effective.”

The discovery may enable finer control over neurons for basic research or for treatment of neurological disorders. Potentially, scientists could target only dendrites or axons in a neuron so as to study its outgoing or incoming impulses.

In addition to these potential applications, the study is notable for its contribution to the understanding of the brain and of protein transport in general.

“It’s a very basic question, something people have been wondering about for a long time,” Arnold said.

The co-authors on the study were first author Tommy Lewis, a graduate student in the molecular and computational biology graduate program at USC, as well as Tianyi Mao and Karel Svoboda from the Howard Hughes Medical Institute at the Janelia Farm Research Campus.

The National Institutes of Health and the Howard Hughes Medical Institute funded the research.


Story Source:

Materials provided by University of Southern California. Note: Content may be edited for style and length.


Journal Reference:

  1. Tommy L Lewis Jr, Tianyi Mao, Karel Svoboda & Don B Arnold. Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nature Neuroscience, 2009; DOI: 10.1038/nn.2318

Cite This Page:

University of Southern California. "Autopilot Guides Proteins In Brain." ScienceDaily. ScienceDaily, 27 April 2009. <www.sciencedaily.com/releases/2009/04/090421101633.htm>.
University of Southern California. (2009, April 27). Autopilot Guides Proteins In Brain. ScienceDaily. Retrieved April 19, 2024 from www.sciencedaily.com/releases/2009/04/090421101633.htm
University of Southern California. "Autopilot Guides Proteins In Brain." ScienceDaily. www.sciencedaily.com/releases/2009/04/090421101633.htm (accessed April 19, 2024).

Explore More

from ScienceDaily

RELATED STORIES