New! Sign up for our free email newsletter.
Science News
from research organizations

Nanostructures to facilitate the process to eliminate organic contaminants in water

Date:
May 12, 2014
Source:
Basque Research
Summary:
Researchers have developed nanostructures that assist in the process of decontaminating water. The nanostructures are coated in titanium oxide to which nitrogen has been added. This allows sunlight, rather than ultraviolet radiation, to trigger the process involving the chemical reaction and destruction of contaminants.
Share:
FULL STORY

A researcher at the Public University of Navarre (UPNA) has developed nanostructures that assist in the process to decontaminate water. The nanostructures are coated in titanium oxide to which nitrogen has been added. This allows sunlight, rather than ultraviolet radiation, to trigger the process involving the chemical reaction and destruction of contaminants.

What is more, thanks to the magnetic nucleus of the particles, once the process has been carried out, they can be retrieved and reused. Silvia Larumbe's thesis is entitled: "Síntesis, caracterización y aplicaciones de nanoestructuras basadas en óxidos de metales de transición" [Synthesis, characterisation and applications of nanostructures based on transition metal oxides].

The research is based on the phenomenon known as photocatalysis: when light affects a substance that acts as a catalyst, the speed of the chemical reaction is increased. In this case, the light activates the titanium oxide and different oxidizing radicals are formed; the latter destroy the organic contaminants in the water, which could be colouring agents, solvents, detergents, etc. As the author of the work explained, "it is a sustainable system that could be used as an alternative to different treatments used traditionally in waste water treatment and, specifically, to eliminate certain organic contaminants."

One of the advantages of this development is the possibility of using sunlight instead of ultraviolet light. "Since nitrogen is added to the coating of the particles, the mechanism that will trigger the process can be sunlight rather than ultraviolet radiation, which means a more accessible, less expensive alternative that poses fewer risks."

The fact that structures of a nanometric size are used also improves photocatalytic capability since the surface of the photocatalyst is greater. Another advantage is the reuse of the catalysing component; since the nanostructures are formed using a magnetic nucleus, they can be retrieved by applying an external magnetic field.


Story Source:

Materials provided by Basque Research. Note: Content may be edited for style and length.


Journal Reference:

  1. C. Gómez-Polo, S. Larumbe, J. M. Pastor. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles. Journal of Applied Physics, 2013; 113 (17): 17B511 DOI: 10.1063/1.4795615

Cite This Page:

Basque Research. "Nanostructures to facilitate the process to eliminate organic contaminants in water." ScienceDaily. ScienceDaily, 12 May 2014. <www.sciencedaily.com/releases/2014/05/140512101529.htm>.
Basque Research. (2014, May 12). Nanostructures to facilitate the process to eliminate organic contaminants in water. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2014/05/140512101529.htm
Basque Research. "Nanostructures to facilitate the process to eliminate organic contaminants in water." ScienceDaily. www.sciencedaily.com/releases/2014/05/140512101529.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES