New! Sign up for our free email newsletter.
Science News
from research organizations

Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis

Date:
January 5, 2024
Source:
CNRS
Summary:
The pathogenic potential of inhaling the inert fibrous nanomaterials used in thermal insulation (such as asbestos or fiberglass) is actually connected not to their chemical composition, but instead to their geometrical characteristics and size. This was revealed by a study conducted on glass nanofibers.
Share:
FULL STORY

The pathogenic potential of inhaling the inert fibrous nanomaterials used in thermal insulation (such as asbestos or fibreglass) is actually connected not to their chemical composition, but instead to their geometrical characteristics and size. This was revealed by a study, published on 3 January 2024 in the journal Nature Nanotechnology, conducted on glass nanofibers by a French-Chinese team including a CNRS chemist.1

The reason for this is the inability of the macrophages2 naturally present in pulmonary alveolar tissue to eliminate foreign bodies that are too large. The study was initially conducted in vitro with electrochemical nanosensors, and revealed that when confronted with inert nanofibers over 15 microns in length,3 the cells are unable to distend enough to entirely encapsulate them within their "digestive" vesicle. This results in leaked secretions that are very harmful for the alveolar walls, which this study detected, characterised, and quantified for the first time.4 An experiment on rats subsequently showed that regular unprotected inhalation of similar inert fibrous nanometerials, whatever they may be, causes repeated pulmonary lesions that can eventually lead to the development of fibroma.

This discovery poses a challenge for the use of inert nanofibre felts in construction, which had heretofore been deemed to be less harmful than the asbestos it replaced, but that in reality could present the same health risks for those handling it.

Notes :

1 From the Selective Activation Processes via Uni-Electronic or Radiative Energy Transfer Laboratory (CNRS/ École normale supérieure -- PSL/Sorbonne Université), in collaboration with Wuhan University.

2"Big eater" cells belonging to groups of white blood cells whose primary role is to eliminate cell debris and pathogenic biological agents throughout the body.

3 Or 0.015mm, a micron measuring 10-3 mm.

4 The ROS and RNS species (species reactive to oxygen and nitrogen) secreted by macrophages are known for attacking the bioorganic components of healthy cells, and cause inflammation and mutations that are often cancerous. While the phenomenon of "frustrated phagocytosis" had already been observed, its role in the pathogenesis of the concerned diseases had not yet been clearly established.


Story Source:

Materials provided by CNRS. Note: Content may be edited for style and length.


Journal Reference:

  1. Yu-Ting Qi, Fu-Li Zhang, Si-Yu Tian, Hui-Qian Wu, Yi Zhao, Xin-Wei Zhang, Yan-Ling Liu, Pingqing Fu, Christian Amatore, Wei-Hua Huang. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres. Nature Nanotechnology, 2024; DOI: 10.1038/s41565-023-01575-0

Cite This Page:

CNRS. "Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis." ScienceDaily. ScienceDaily, 5 January 2024. <www.sciencedaily.com/releases/2024/01/240105145043.htm>.
CNRS. (2024, January 5). Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis. ScienceDaily. Retrieved March 2, 2024 from www.sciencedaily.com/releases/2024/01/240105145043.htm
CNRS. "Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis." ScienceDaily. www.sciencedaily.com/releases/2024/01/240105145043.htm (accessed March 2, 2024).

Explore More
from ScienceDaily

RELATED STORIES