Featured Research

from universities, journals, and other organizations

Enzyme Helps Males Make Up For Their X Chromosome Shortage

Date:
June 1, 2008
Source:
European Molecular Biology Laboratory
Summary:
Researchers have revealed new insights into how sex chromosomes are regulated. A chromatin modifying enzyme helps compensate for the fact that males have only one copy of the sex chromosome X, while females have two.

Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have revealed new insights into how sex chromosomes are regulated. A chromatin modifying enzyme helps compensate for the fact that males have only one copy of the sex chromosome X, while females have two. The enzyme distinguishes between male and female sex chromosomes in fruit flies and binds to different locations on the male and female X chromosome, the scientists have recently reported in the journal Cell. The evolutionarily conserved enzyme is also found in humans.

Related Articles


In species ranging from insects to humans, sex chromosomes, the famous X and Y, are responsible for determining gender. Females have two copies of the X chromosome while males have one X and one Y. This could mean that females produce twice as many proteins from the genes carried on the X chromosome as males. However, fruit flies compensate for the sex chromosome difference by doubling the activity of genes on the X chromosome in males -- a vital process called dosage compensation. Biologists already know that a molecular machine called the MSL complex achieves dosage compensation in flies, but it remains unclear how exactly it accomplishes its function.

Now researchers from the lab of Asifa Akhtar at EMBL and the groups of Nick Luscombe and Paul Bertone at EMBL-EBI have uncovered how one component of the MSL complex, an enzyme called MOF, ensures that the activity of only male X chromosome genes get ratcheted up. MOF relaxes the structure of chromatin -- tightly packaged DNA, to allow the transcription machinery to access genes on the DNA.

"We were very surprised to find MOF bound not only to the X chromosome in males, but also to all the other chromosomes in the nucleus. This suggests the enzyme as a universal regulator of transcription that has evolved to play a specific role in dosage compensation," says Akhtar.

A closer look revealed that MOF binds differently to chromosomes from males and females. On autosomes, chromosomes that are not involved in determining sex, and the X chromosome in females, MOF binds mostly to the beginning of a gene where transcription starts. On the X chromosome in males, however, MOF binds also towards the end of the gene. Most likely MOF opens up the DNA towards the end of the genes and ensures that transcription is completed successfully.

"One can imagine the transcriptional machinery moving along the DNA like a train on a railway track. When the tracks are blocked the train could derail, resulting in incomplete transcription," explains Juanma Vaquerizas of Luscombe's lab, who contributed to the analysis of Akhtar's data. "It appears that MOF clears the tracks throughout the male X chromosome, while on a female X obstructions are more likely to occur."

More complete transcription results in more proteins produced from the single X chromosome in males than from either of the two X chromosomes in females, thereby balancing out their excess. MOF is the first enzyme in the MSL complex to behave differently according to whether the target gene is located on the sex chromosome versus other chromosomes in males.

"MOF is conserved across species and also has a human homolog. Since the mechanism of dosage compensation is radically different in mammals, it will be very interesting to discover what functional role this enzyme might play in that context," says Bertone.


Story Source:

The above story is based on materials provided by European Molecular Biology Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

European Molecular Biology Laboratory. "Enzyme Helps Males Make Up For Their X Chromosome Shortage." ScienceDaily. ScienceDaily, 1 June 2008. <www.sciencedaily.com/releases/2008/05/080529121210.htm>.
European Molecular Biology Laboratory. (2008, June 1). Enzyme Helps Males Make Up For Their X Chromosome Shortage. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2008/05/080529121210.htm
European Molecular Biology Laboratory. "Enzyme Helps Males Make Up For Their X Chromosome Shortage." ScienceDaily. www.sciencedaily.com/releases/2008/05/080529121210.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins