Featured Research

from universities, journals, and other organizations

New Research Identifies Faster Detection Of Viruses

Date:
February 25, 2009
Source:
University of Dublin (Trinity College)
Summary:
Scientists can now detect viruses more specifically and faster than ever before. Viruses can currently be detected in fluids and their detection is of major importance in medical diagnostics. However, despite recent advances, current assays are time consuming and labor intensive. New research shows a more efficient and practical system in detecting the viruses by using micro-sized cantilevers to directly detect viruses binding to membrane proteins.

A more specific and faster detection of viruses has been identified in new research by Trinity College Dublin’s Professor of Physics, Martin Hegner at Trinity College’s Centre of Research on Adaptive Nanostructures and Nanodevices (CRANN) and an international team of researchers.

Related Articles


Viruses can be now detected in fluids and their detection is of major importance in medical diagnostics. However, despite these recent advances, current assays are time consuming and labour intensive. Professor Hegner’s research shows a more efficient and practical system in detecting the viruses by using micro-sized cantilevers to directly detect viruses binding to membrane proteins.

Micro-cantilevers, which look like springboards are .5 millimetres long and 1 micrometre thick, bend in response to different forces. By measuring changes in the frequencies at which these tiny planks vibrate, researchers have turned them into super-sensitive virus-weighing scales.

Membrane proteins are the most important target for present-day drug discovery programmes. The interactions between transmembrane protein receptors and their ligands are responsible for viral detection and central to medical research. However, measuring these interactions is challenging due to the special architecture and consistency of transmembrane proteins in liquids.

For the first time, Trinity College Dublin’s Professor Martin Hegner and his team have discovered how to perform these measurements in physiological conditions using nanotechnology devices. Their work shows that nanomechanical sensors based on resonating silicon micro-cantilevers can measure such interactions rapidly in such conditions.

The researchers used the protein receptor, FhuA of Escherichia coli known to bind to the T5 virus. Professor Hegner and his colleagues coated the cantilever surfaces with a molecular layer of FhuA proteins sensitised to recognise molecules from the environment. When the array was submerged in a T5 containing fluid, the researchers detected the virus binding to FhuA by measuring shifts in the vibrational frequency of the cantilevers.

Commenting on the significance of the discovery, Professor Hegner said: “These findings could lead to more specific blood tests and also will enable portable diagnostic devices in a hospital environment for a range of testing not just viruses, but also genomic markers and marker proteins.”


Story Source:

The above story is based on materials provided by University of Dublin (Trinity College). Note: Materials may be edited for content and length.


Journal Reference:

  1. Braun et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotechnology, March 2009; DOI: 10.1038/nnano.2008.398

Cite This Page:

University of Dublin (Trinity College). "New Research Identifies Faster Detection Of Viruses." ScienceDaily. ScienceDaily, 25 February 2009. <www.sciencedaily.com/releases/2009/02/090216093014.htm>.
University of Dublin (Trinity College). (2009, February 25). New Research Identifies Faster Detection Of Viruses. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2009/02/090216093014.htm
University of Dublin (Trinity College). "New Research Identifies Faster Detection Of Viruses." ScienceDaily. www.sciencedaily.com/releases/2009/02/090216093014.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
Chihuahua Sleeps on Top of Great Dane

Chihuahua Sleeps on Top of Great Dane

Rumble (Jan. 27, 2015) As this giant Great Dane lays down for bedtime he accompanied by an adorable companion. Watch a tiny Chihuahua jump up and prepare to sleep on top of his friend. Now that&apos;s a pretty big bed! Credit to &apos;emma_hussey01&apos;. Video provided by Rumble
Powered by NewsLook.com
Madagascar Locust Plague Could Mean Famine For Millions

Madagascar Locust Plague Could Mean Famine For Millions

Newsy (Jan. 27, 2015) The Food and Agriculture Organization says millions could face famine in Madagascar without more funding to finish locust eradication efforts. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins