Featured Research

from universities, journals, and other organizations

First genome-wide assessment of secretion in human cells

Date:
June 3, 2012
Source:
UCD Conway Institute of Biomolecular & Biomedical Research
Summary:
Scientists have revealed that 15% of the proteins encoded by the human genome contribute to the process of secretion in cells. This finding has been made possible through the assessment of more than 8 million individual cells.

In cells where different genes are silenced (middle, bottom), the site where the secretory processes begins (green) changes compared to normal cells (top).
Credit: Image courtesy of UCD Conway Institute of Biomolecular & Biomedical Research

Scientists in University College Dublin and the European Molecular Biology Laboratory (EMBL) reveal that 15% of the proteins encoded by the human genome contribute to the process of secretion in cells. This finding has been made possible through the assessment of more than 8 million individual cells.

An international collaboration between scientists in University College Dublin and the European Molecular Biology Laboratory (EMBL) has revealed for the first time that 15% of the proteins encoded by the human genome contribute to the process of secretion in cells. This finding has been made possible through the assessment of more than 8 million individual cells.

"This study is the first genome-wide assessment of the secretory process in a human cell system," explains Professor Jeremy Simpson, UCD School of Biology & Environmental Science and UCD Conway Institute, co-author of the research paper recently published online in Nature Cell Biology.

Science has long recognised that secretion is a fundamental process, essential to almost all cell types in the body. The process is used to deliver hormones into the blood stream, digestive enzymes into the gut, and signalling molecules between cells.

However, until now, technology did not permit scientists to catalogue the complex pathway that a protein or lipid takes from manufacture to packaging and transporting through the cell to being secreted from the cell.

"Previous studies on the secretory process have either been carried out with a more narrow focus on specific subsets of genes or in more simplistic organisms such as the fruit fly (Drosophila) where many of the proteins identified have no human equivalent. Now, using high content screening, we have been able to systematically target each of the 22,000 human genes and track the journey of a specific, fluorescently-tagged protein as it travels through, and out of, over 8 million individual cells."

"In order for us to understand the impact on the body when this fundamental process of secretion is disrupted, we must first decipher the functional network of membrane trafficking pathways within the cell."

The researchers analysed more than 700,000 microscopy images and found 554 proteins that influence secretion, with 143 of these either influencing the early stage of the secretory pathway or morphology of the Golgi, a cellular structure responsible for packaging and labelling proteins.

Membrane traffic pathways connect membrane bound organelles in a carefully ordered sequence that ensures the correct complement of proteins and lipids within the cell exist in order to maintain cellular balance or homeostasis.

Newly synthesised proteins and lipids in the endoplasmic reticulum (ER) are modified as they pass along the secretory pathway through the Golgi apparatus to the cell surface.

The secretory pathway has the capacity to cope with a wide variety of cargo molecules, and as such utilises extensive regulatory machinery in the process. This study focuses on particular regulatory elements in the early stage of the pathway called the cytoplasmic coat protein complexes.

This work was carried out in collaboration with co-author Dr Rainer Pepperkok and Dr Jan Ellenberg from EMBL, Heidelberg. The major part of funding for this research has come from Science Foundation Ireland, the EU-funded network of excellence, 'Systems Microscopy', and the EU-FP6 MitoCheck consortium.


Story Source:

The above story is based on materials provided by UCD Conway Institute of Biomolecular & Biomedical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy C. Simpson, Brigitte Joggerst, Vibor Laketa, Fatima Verissimo, Cihan Cetin, Holger Erfle, Mariana G. Bexiga, Vasanth R. Singan, Jean-Karim Hιrichι, Beate Neumann, Alvaro Mateos, Jonathon Blake, Stephanie Bechtel, Vladimir Benes, Stefan Wiemann, Jan Ellenberg, Rainer Pepperkok. Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway. Nature Cell Biology, 2012; DOI: 10.1038/ncb2510

Cite This Page:

UCD Conway Institute of Biomolecular & Biomedical Research. "First genome-wide assessment of secretion in human cells." ScienceDaily. ScienceDaily, 3 June 2012. <www.sciencedaily.com/releases/2012/06/120603191623.htm>.
UCD Conway Institute of Biomolecular & Biomedical Research. (2012, June 3). First genome-wide assessment of secretion in human cells. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/06/120603191623.htm
UCD Conway Institute of Biomolecular & Biomedical Research. "First genome-wide assessment of secretion in human cells." ScienceDaily. www.sciencedaily.com/releases/2012/06/120603191623.htm (accessed September 1, 2014).

Share This




More Plants & Animals News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Washington Wildlife Center Goes Nuts Over Baby Squirrels

Washington Wildlife Center Goes Nuts Over Baby Squirrels

Reuters - US Online Video (Aug. 30, 2014) — An animal rescue in Washington state receives an influx of orphaned squirrels, keeping workers busy as they nurse them back to health. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) — In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins