Featured Research

from universities, journals, and other organizations

Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell

Date:
June 21, 2013
Source:
Max Planck Institute of Biochemistry
Summary:
Proteins can only perform their complex functions in the cell when they assume a specific three-dimensional structure for each respective task. Because misfolded proteins are often toxic, they are immediately refolded or degraded. Scientists have now shown in the yeast model that specific protein aggregates block an important degradation pathway for defective proteins – and thus disrupt the fragile molecular balance of the cell.

PolyQ aggregates (red) inhibit degradation of misfolded protein (green) and accumulate cytosolic inclusions. The nucleus is stained in blue.
Credit: Sae-Hun Park, Copyright: MPI of Biochemistry.

Proteins can only perform their complex functions in the cell when they assume a specific three-dimensional structure for each respective task. Because misfolded proteins are often toxic, they are immediately refolded or degraded. Scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich have now shown in the yeast model that specific protein aggregates block an important degradation pathway for defective proteins – and thus disrupt the fragile molecular balance of the cell. The results of the study have now been published in the journal Cell.

Related Articles


Protein aggregates in cells can cause severe diseases such as Huntington’s disease. The massive movement disorders that appear with this disease are likely caused by aggregates of specific proteins, the polyQ proteins. Scientists of the research department “Cellular Biochemistry” headed by F.-Ulrich Hartl have now shown how these protein aggregates, commonly known as plaques, seriously disrupt cellular homeostasis.

Cells in the balance
The entire set of all cellular proteins is referred to as the proteome, whose composition is determined by a delicate balance of protein production and degradation. This process is regulated at several levels. Key helpers here are the molecular chaperones which aid the proteins in proper folding or lead them to degradation if the misfolding is irreparable. Among other things, this procedure serves to prevent the formation of protein plaques. Hartl’s team has now succeeded in demonstrating that polyQ aggregates in yeast primarily have an effect on the chaperone Sis1p.

This molecule functions as a cellular shuttle: It transports misfolded proteins from the cytosol into the cell nucleus, where they are degraded. The harmful polyQ plaques block this process by intercepting Sis1p. “As a result, misfolded proteins accumulate in the cell, which may contribute to the toxicity of polyQ aggregates,” said Sae-Hun Park, scientist at the MPI of Biochemistry and first author of the study.

Similar processes may occur in polyQ diseases in humans. Also in mammalian cells, misfolded proteins are transported from the cytosol into the nucleus. Here the chaperone DnajB1 plays a role similar to Sis1p in the yeast model. Contrary to prevailing opinion, Hartl’s team even assumes that this degradation pathway is the most important means of clearance of misfolded proteins from the cell interior. Further studies shall now show whether and to what extent these fundamental processes play a role in the pathogenic protein plaques.


Story Source:

The above story is based on materials provided by Max Planck Institute of Biochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sae-Hun Park, Yury Kukushkin, Rajat Gupta, Taotao Chen, Ayano Konagai, MarkS. Hipp, Manajit Hayer-Hartl, F.Ulrich Hartl. PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone. Cell, 2013; DOI: 10.1016/j.cell.2013.06.003

Cite This Page:

Max Planck Institute of Biochemistry. "Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell." ScienceDaily. ScienceDaily, 21 June 2013. <www.sciencedaily.com/releases/2013/06/130621095508.htm>.
Max Planck Institute of Biochemistry. (2013, June 21). Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/06/130621095508.htm
Max Planck Institute of Biochemistry. "Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell." ScienceDaily. www.sciencedaily.com/releases/2013/06/130621095508.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins