Featured Research

from universities, journals, and other organizations

Protein evolution follows modular principle

Date:
July 23, 2014
Source:
Max-Planck-Gesellschaft
Summary:
Similarities between proteins reveal that their great diversity has arisen from smaller building blocks. Proteins consist of long chains of 20 different amino acid building blocks that fold into a characteristic three-dimensional structure. It is noteworthy that some modules, known as protein domains, occur more frequently than others. Scientists suspect that many of these domains share a common evolutionary origin.

At first glance, proteins that fold into a barrel-like shape (left) and proteins that fold into a sandwich-like shape (right) appear completely different. However, analyses of their amino acid sequences as well as a recently identified intermediate form (centre) have revealed similarities that suggest a common evolutionary origin.
Credit: © MPI for Developmental Biology /B. Höcker

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck Institute for Developmental Biology in Tübingen have now discovered that proteins can be constructed of similar amino acid chains even when their three-dimensional shapes differ significantly. This suggests that the proteins that exist today arose from common precursors. Presumably, in the course of evolution they were built up from smaller fragments according to a modular principle.

Related Articles


Proteins consist of long chains of 20 different amino acid building blocks that fold into a characteristic three-dimensional structure. It is noteworthy that some modules, known as protein domains, occur more frequently than others. Scientists suspect that many of these domains share a common evolutionary origin.

To test this theory, the Max Planck researchers focussed on two large, evolutionarily ancient protein groups that differ significantly in their folding pattern. While "flavodoxin-like" protein domains fold into a kind of sandwich shape, so-called (βα)8-barrel proteins stack two sandwich elements on top of each other to form a barrel-like structure. "In the folded state it's very difficult to recognize similarities between these two types," José Arcadio Farías Rico, first author of the study, explains. The Tübingen scientists therefore compared the amino acid chains of over a thousand representatives of both folding types in a computer analysis. They found that short, characteristic sequences of amino acids occur in both folding types.

In the next step, the team identified a third folding type whose amino acid sequence is an intermediate form between the other two types. To compare the amino acid sequences, the researchers used a highly sensitive method that enabled them to identify even the smallest shared features. "Analysis of the three-dimensional structure of the intermediate form by X-ray crystallography showed that the intermediate form has characteristics of both the barrel-like and the sandwich-like folding type," says Farias-Rico.

The similarity of the amino acid sequences and the existence of an intermediate form confirm a hypothesis proposed by Birte Höcker, head of the Protein Design Working Group at the Max Planck Institute for Developmental Biology, according to which the two folding types developed in the course of evolution from a common ancestor. "We assume that evolutionarily early proteins consisted of only short amino acid chains. Those fragments then joined together as in a construction kit to form new molecules with new functions," Höcker explains.

Höcker's team has thus provided fresh insights into the evolution of modern proteins and the origins of life on Earth. In addition, the Max Planck scientist is pursuing research in the field of synthetic biology and wants to apply this knowledge to construct variant proteins with new functions in the laboratory.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. José Arcadio Farías-Rico, Steffen Schmidt, Birte Höcker. Evolutionary relationship of two ancient protein superfolds. Nature Chemical Biology, 2014; DOI: 10.1038/NCHEMBIO.1579

Cite This Page:

Max-Planck-Gesellschaft. "Protein evolution follows modular principle." ScienceDaily. ScienceDaily, 23 July 2014. <www.sciencedaily.com/releases/2014/07/140723123946.htm>.
Max-Planck-Gesellschaft. (2014, July 23). Protein evolution follows modular principle. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2014/07/140723123946.htm
Max-Planck-Gesellschaft. "Protein evolution follows modular principle." ScienceDaily. www.sciencedaily.com/releases/2014/07/140723123946.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins