Featured Research

from universities, journals, and other organizations

Elusive viral 'machine' architecture finally rendered

Date:
August 11, 2014
Source:
Brown University
Summary:
Biologists have worked with the Lambda virus as a model system for more than 50 years but they've never had an overarching picture of the molecular machines that allow it to insert or remove DNA from the cells that it infects. Now they can, thanks to an advance that highlights the intriguingly intricate way the virus accomplishes its genetic manipulations.

Lambda uses this DNA-protein complex to insert its DNA into that of its E.coli host. Another complex, or machine, extracts the DNA later.
Credit: Arthur Landy et al./Brown University

For half a century biologists have studied the way that the lambda virus parks DNA in the chromosome of a host E. coli bacterium and later extracts it as a model reaction of genetic recombination. But for all that time, they could never produce an overall depiction of the protein-DNA machines that carry out the work. In a pair of back-to-back papers in the Proceedings of the National Academy of Sciences, scientists produce those long-sought renderings and describe how they figured out how they should look.

Related Articles


For people already in the know, here's the advance in a sentence: The team of researchers at Brown University and the University of Pennsylvania mapped the specific ways that the recombination proteins in the machines bridge separate sites along the DNA of the host and the virus. But for everyone else, to understand what that means is to appreciate the evolved "ingenuity" of the lambda virus that has made it the subject of 50 years of intriguing study. Thankfully Lambda is benign, although it has medically nasty cousins that work much the same way.

Lambda, said co-corresponding author and Brown emeritus biology Professor Arthur Landy, is not one of those devil-may-care viruses that just smashes and grabs a host cell for immediate reproduction. Instead it senses the physiology of its E. coli host and waits for the cell to be healthy before striking, perhaps several generations of cell division later. To execute this more refined strategy it assembles a n ensemble of proteins, or a " machine" to insert its DNA in a precise location in the DNA of the host (to ensure that its DNA will persist for many generations of host cells), and another machine to extract the DNA when the chosen moment of ideal host health arrives.

"The viruses make a 'decision' when they infect a cell as to whether or not this is a good time to lyse the cell and make more virus or whether it would be more propitious to integrate their chromosome into the E. coli chromosome, turn off their genes and sit there for generations," Landy said. "Then when things look good again they use a different but related pathway to excise their chromosome, in order to make more virus and kill the cell."

The way Lambda senses the health status of the host is built right into the machines. The machines incorporate key DNA-bending proteins that are made by E. coli to regulate expression of its own genes. Therefore the levels of these proteins also reflect the physiological state of the cell, Landy said. While some recombination proteins bind to just one site in each DNA, Lambda and its ilk go through the trouble of latching on to two distant sites in the DNA. The reason is to make the whole reaction depend on the presence of these key DNA-bending proteins to bend the sites into closer proximity. Without those proteins, the machines can't work.

""It makes the system gratuitously dependent on the proteins of the cell which serve as reporters of how well the cell is doing and where it is in its life cycle," Landy said. "This makes it exquisitely sensitive to the physiology of the cell."

Mapping Bridges

Biologists already knew all this, but they had never quite figured out how the recombination proteins in the machines bridge the two DNA sites,(i.e.,which sites were bound or bridged by the same recombination protein). Therefore they couldn't really figure out what the whole machines looked like. Direct imaging tools such as crystallography never worked on the whole machines because it has too many forms, Landy said, and nuclear magnetic resonance never worked because it was too hard to make enough of the machines in a high enough concentration.

So the team did a couple of other experiments to figure out the bridging. One used chemicals and the other used genetics, but in each case they were essentially tagging different pairs of locations on the proteins and the DNA to see if any of those pairs, upon being connected, would produce a tell-tale effect: in the case of the chemistry the tell-tale was a change in the structural properties of the complex; in the case of the genetics it was a successful integration or excision reaction

It's a bit like trying to wire a battery into a light bulb circuit where there are many pairs of loose wires, but only two that actually connect to the bulb. When one finally connects (or "bridges") the right two loose wires with the battery's electrodes, the light bulb lights and then one has mapped where those correct two wires are.

They combined their new mappings, including distance measurements within the protein-DNA complexes using fluorescent tags, with all of the other biochemical and structural information biologists have learned over the last 50 years, into a computer model to render the overall depictions of the machines.

They confirmed in further research that the models they generated explained and agreed with much of the observed behavior of the machines.

So now, long after they began to understand how worthwhile the Lambda virus was to study, researchers can finally see what these model DNA insertion and removal machines look like. That information will serve to make Lambda an even more powerful model for research and teaching, Landy said.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wenjun Tong, David Warren, Nicole E. Seah, Gurunathan Laxmikanthan, Gregory D. Van Duyne, and Arthur Landy. Mapping the {lambda} Integrase bridges in the nucleoprotein Holliday junction intermediates of viral integrative and excisive recombination. PNAS, August 2014 DOI: 10.1073/pnas.1413007111

Cite This Page:

Brown University. "Elusive viral 'machine' architecture finally rendered." ScienceDaily. ScienceDaily, 11 August 2014. <www.sciencedaily.com/releases/2014/08/140811170153.htm>.
Brown University. (2014, August 11). Elusive viral 'machine' architecture finally rendered. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2014/08/140811170153.htm
Brown University. "Elusive viral 'machine' architecture finally rendered." ScienceDaily. www.sciencedaily.com/releases/2014/08/140811170153.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins