New! Sign up for our free email newsletter.
Science News
from research organizations

Sensory experience and rest control survival of newborn neurons in adults

Date:
September 7, 2011
Source:
Cell Press
Summary:
When it comes to the circuits that make up the olfactory system, it seems that less is more. Much like the addition and elimination of extra synapses that helps fine-tune brain circuitry, the olfactory system continues to produce and remove neurons throughout life. Yet it is not entirely clear how and why some newborn neurons are preserved while others are eliminated. Now, new research reveals that both olfactory experience during feeding and a subsequent period of rest contribute to both the likelihood that a new olfactory neuron will escape elimination and be incorporated into existing circuitry.
Share:
FULL STORY

When it comes to the circuits that make up the olfactory system, it seems that less is more. Much like the addition and elimination of extra synapses that helps fine-tune brain circuitry, the olfactory system continues to produce and remove neurons throughout life. Yet it is not entirely clear how and why some newborn neurons are preserved while others are eliminated. Now, new research published by Cell Press in the Sept. 8 issue of the journal Neuron reveals that both olfactory experience during feeding and a subsequent period of rest contribute to both the likelihood that a new olfactory neuron will escape elimination and be incorporated into existing circuitry.

In mice, olfactory neurons called "granule cells" are generated and incorporated into the neuronal circuitry from birth through adulthood. About half of these neurons are integrated into existing circuitry, while the other half are eliminated through a process called apoptosis. The mechanisms that underlie the selection process are not well understood, though some clues have come from studies showing that synaptic elimination associated with memory and learning depends on the sleep-wake cycle.

A research group led by senior study author Dr. Masahiro Yamaguchi from the University of Tokyo examined whether distinct behavioral periods might also impact plasticity in the olfactory system. "We were interested in determining whether the selection of adult-born granule cells in the olfactory bulb occurs continuously throughout the day or whether it occurs in association with specific behavioral states," explains Dr. Yamaguchi.

Using a combination of behavioral analysis and a staining technique that allowed detection of apoptotic cells, Dr. Yamaguchi and colleagues observed that extensive elimination of adult-born granule cells occurred during the period immediately after the mice had eaten, a time during which the mice engaged in typical post-meal behaviors such as rest, extended grooming, and sleep. Interestingly, when these behaviors were disrupted, apoptosis was prevented. The researchers also observed that the extent of apoptosis was regulated by prior olfactory sensory experience. Sensory deprivation (occlusion of one nostril) enhanced granule cell apoptosis specifically during the time period after feeding. The authors suggest that sensory experience thus serves to "tag" key synapses and prevent them from being eliminated during subsequent sleep.

"Our results suggest that extensive structural reorganization of the circuitry in the olfactory bulb occurs during the period after feeding and that this reorganization reflects sensory experience from the preceding waking period," concludes Dr. Yamaguchi. "Complex mechanisms of experience-dependent reorganization in the olfactory bulb will likely be revealed in the framework of two sequential behavioral periods, the waking period with olfactory behavior and the rest/sleep period that follows olfactory behavior."


Story Source:

Materials provided by Cell Press. Note: Content may be edited for style and length.


Journal Reference:

  1. Takeshi K. Yokoyama, Daisuke Mochimaru, Koshi Murata, Hiroyuki Manabe, Ko Kobayakawa, Reiko Kobayakawa, Hitoshi Sakano, Kensaku Mori, Masahiro Yamaguchi. Elimination of Adult-Born Neurons in the Olfactory Bulb Is Promoted during the Postprandial Period. Neuron, 2011; 71 (5): 883-897 DOI: 10.1016/j.neuron.2011.05.046

Cite This Page:

Cell Press. "Sensory experience and rest control survival of newborn neurons in adults." ScienceDaily. ScienceDaily, 7 September 2011. <www.sciencedaily.com/releases/2011/09/110907132057.htm>.
Cell Press. (2011, September 7). Sensory experience and rest control survival of newborn neurons in adults. ScienceDaily. Retrieved April 26, 2024 from www.sciencedaily.com/releases/2011/09/110907132057.htm
Cell Press. "Sensory experience and rest control survival of newborn neurons in adults." ScienceDaily. www.sciencedaily.com/releases/2011/09/110907132057.htm (accessed April 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES