New! Sign up for our free email newsletter.
Science News
from research organizations

Photosynthesis: Putting light-harvesters on the spot

Date:
October 19, 2011
Source:
Ruhr-Universitaet-Bochum
Summary:
Researchers now describe how the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell. The team has demonstrated for the first time that a membrane protein interacts with a single soluble protein to anchor the subunits of the light-harvesting complexes in the membrane. The researchers propose a new model that explains the integration into the membrane through the formation of a pore.
Share:
FULL STORY

How the light-harvesting complexes required for photosynthesis get to their site of action in the plant cell is reported by RUB biologists in the Journal of Biological Chemistry. The team led by Prof. Dr. Danja Schünemann (RUB working group on the molecular biology of plant organelles) has demonstrated for the first time that a membrane protein interacts with a single soluble protein to anchor the subunits of the light-harvesting complexes in the membrane. The researchers propose a new model that explains the integration into the membrane through the formation of a pore.

Light harvesting

Photosynthesis occurs in special areas of the plant cells, the chloroplasts, whereby the energy-converting process takes place in specific protein complexes (photosystems). To capture the light energy and efficiently transmit it to the photosystems, light-harvesting complexes are required which work like antenna. "The proteins of the light-harvesting complexes are the most abundant membrane proteins on Earth" says Dr. Beatrix Dünschede of the RUB. "There is a special transport mechanism that conveys them into the chloroplasts and incorporates them into the photosynthetic membrane." Exactly how the various transport proteins interact with each other had, up to now, been unclear.

Interaction between only two proteins

Several soluble proteins and the membrane protein Alb3 that channels the proteins of the light-harvesting complexes into the membrane are involved in the transport. Bochum's biologists examined intact, isolated plant cells and found that, for this purpose, Alb3 interacts with only a single soluble transport protein (cpSRP43). They confirmed this result in a second experiment with artificial membrane systems. "In a further experiment, we identified the region in Alb3 to which the soluble protein cpSRP43 binds" explains the RUB biologist Dr. Thomas Bals. "It turned out that the binding site is partly within the membrane and thus cannot be freely accessible for cpSRP43."

Through the pore into the membrane

Schünemann's team explains the data with a new model. The soluble transport proteins bind the proteins of the light-harvesting complexes and transport them to the membrane. There, the soluble transport protein cpSRP43 interacts with the membrane protein Alb3, which then forms a pore. The proteins of the light-harvesting complexes get into the pore, and from there they are released laterally into the membrane. "There are proteins in other organisms which are very similar to Alb3 and apparently also form pores" says Dünschede. "This supports our model. We are now planning new experiments in order to recreate the entire transport path in an artificial system."


Story Source:

Materials provided by Ruhr-Universitaet-Bochum. Note: Content may be edited for style and length.


Journal Reference:

  1. B. Dunschede, T. Bals, S. Funke, D. Schunemann. Interaction Studies between the Chloroplast Signal Recognition Particle Subunit cpSRP43 and the Full-length Translocase Alb3 Reveal a Membrane-embedded Binding Region in Alb3 Protein. Journal of Biological Chemistry, 2011; 286 (40): 35187 DOI: 10.1074/jbc.M111.250746

Cite This Page:

Ruhr-Universitaet-Bochum. "Photosynthesis: Putting light-harvesters on the spot." ScienceDaily. ScienceDaily, 19 October 2011. <www.sciencedaily.com/releases/2011/10/111019104543.htm>.
Ruhr-Universitaet-Bochum. (2011, October 19). Photosynthesis: Putting light-harvesters on the spot. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2011/10/111019104543.htm
Ruhr-Universitaet-Bochum. "Photosynthesis: Putting light-harvesters on the spot." ScienceDaily. www.sciencedaily.com/releases/2011/10/111019104543.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES