New! Sign up for our free email newsletter.
Science News
from research organizations

Four new genes confirmed to increase familial breast cancer risk

Date:
June 4, 2014
Source:
Huntsman Cancer Institute at the University of Utah
Summary:
Four new genes have been added to the growing list of those known to cause increased breast cancer risk when mutated through the efforts of researchers of an international consortium working to find more gene mutations that cause inherited breast cancer susceptibilities.
Share:
FULL STORY

Four new genes have been added to the growing list of those known to cause increased breast cancer risk when mutated through the efforts of researchers at Huntsman Cancer Institute (HCI) at the University of Utah, who lead an international consortium working to find more gene mutations that cause inherited breast cancer susceptibilities.

"BRCA1 and BRCA2 aren't the whole story when it comes to inherited breast cancer risk. We've known for a long time that more genes had to be responsible and several have since been discovered, by us and by others," according to Sean Tavtigian, Ph.D., an HCI investigator, professor in the Department of Oncological Sciences at the University of Utah (U of U), and one of three joint-principal investigators on the study. "Originally, the gene we are currently studying, called RINT1, was not considered a human cancer susceptibility gene. But then we discovered there was a two- to three-fold increase in risk for breast cancer in families that carry a mutation in that gene." The RINT1 findings were published this month in the journal Cancer Discovery.

Surprisingly, RINT1 was also found to increase risk for a broad spectrum of gastrointestinal and gynecological cancers in these families. "Many genes responsible for a strong increase in cancer risk at one or two sites in the body are also connected with lesser increases in risk at other sites," said David Goldgar, Ph.D., professor in the Department of Dermatology at the U of U, an HCI investigator, and another of the study's joint-principal investigators. "However, with RINT1 mutations, the increased risk for other cancers is about equal to that for breast cancer."

In another study led by Tavtigian, mutations in three other genes -- MRE11A, RAD50, and NBN -- were also confirmed to increase breast cancer risk, as reported in the journal Breast Cancer Research June 3. "The proteins encoded by these three genes form a tight complex that is involved in DNA repair, and the three genes had been considered likely candidates. Interestingly, RINT1's name is an abbreviation for 'RAD50 Interactor 1,' and it's just one step downstream from the MRE11A, RAD50, NBN complex in a biochemical sense," said Tavtigian. "But we don't know yet if that biochemical connection explains RINT1's cancer susceptibility role."

Now almost 50% of the familial risk for breast cancer can be explained by the ensemble of rare mutations in known breast cancer susceptibility genes and more common genetic variation in about 75 areas of the genome each of which is associated with only a small increased risk of breast cancer according to Goldgar, compared to about 30% only five years ago. The consortium's ongoing efforts continue to enlarge the panel of genes known to account for increased occurrence of breast cancer within families with a history of the disease.


Story Source:

Materials provided by Huntsman Cancer Institute at the University of Utah. Note: Content may be edited for style and length.


Journal References:

  1. D. J. Park, K. Tao, F. Le Calvez-Kelm, T. Nguyen-Dumont, N. Robinot, F. Hammet, F. Odefrey, H. Tsimiklis, Z. L. Teo, L. B. Thingholm, E. L. Young, C. Voegele, A. Lonie, B. J. Pope, T. C. Roane, R. Bell, H. Hu, _. Shankaracharya, C. D. Huff, J. Ellis, J. Li, I. V. Makunin, E. M. John, I. L. Andrulis, M. B. Terry, M. Daly, S. S. Buys, C. Snyder, H. T. Lynch, P. Devilee, G. G. Giles, J. L. Hopper, B.-J. Feng, F. Lesueur, S. Tavtigian, M. C. Southey, D. E. Goldgar. Rare mutations in RINT1 predispose carriers to breast and Lynch Syndrome-spectrum cancers. Cancer Discovery, 2014; DOI: 10.1158/2159-8290.CD-14-0212
  2. Francesca Damiola, Maroulio Pertesi, Javier Oliver, Florence Le Calvez-Kelm, Catherine Voegele, Erin L Young, Nivonirina Robinot, Nathalie Forey, Geoffroy Durand, Maxime P Vallée, Kayoko Tao, Terrell C Roane, Gareth J Williams, John L Hopper, Melissa C Southey, Irene L Andrulis, Esther M John, David E Goldgar, Fabienne Lesueur, Sean V Tavtigian. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Research, 2014; 16 (3): R58 DOI: 10.1186/bcr3669

Cite This Page:

Huntsman Cancer Institute at the University of Utah. "Four new genes confirmed to increase familial breast cancer risk." ScienceDaily. ScienceDaily, 4 June 2014. <www.sciencedaily.com/releases/2014/06/140604105311.htm>.
Huntsman Cancer Institute at the University of Utah. (2014, June 4). Four new genes confirmed to increase familial breast cancer risk. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2014/06/140604105311.htm
Huntsman Cancer Institute at the University of Utah. "Four new genes confirmed to increase familial breast cancer risk." ScienceDaily. www.sciencedaily.com/releases/2014/06/140604105311.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES