New! Sign up for our free email newsletter.
Science News
from research organizations

Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system

Date:
November 18, 2022
Source:
Hong Kong University of Science and Technology
Summary:
Damages to the central nervous system (CNS), for example in the case of spinal cord injury, can result in permanent loss of sensory and motor function. It is because the severed axons are unable to regenerate. As of today, there are very limited options to help these patients regain their motor abilities. Scientists have been exploring ways to enable the regeneration of severed axons, with a view to developing viable treatments in the long term.
Share:
FULL STORY

Damages to the central nervous system (CNS), for example in the case of spinal cord injury, can result in permanent loss of sensory and motor function. It is because the severed axons are unable to regenerate. As of today, there are very limited options to help these patients regain their motor abilities. Scientists have been exploring ways to enable the regeneration of severed axons, with a view to developing viable treatments in the long term.

In a study using mice, a research team led by Cheng Associate Professor Kai LIU of the Division of Life Science, the Hong Kong University of Science and Technology (HKUST), untangled some of the complexities in the regeneration of severed axons. They found that the deletion of PTPN2, a phosphatase-coding gene, in neurons can prompt axons to regrow. When combined with the type II interferon IFNγ, it can further accelerate the process and boost the number of axons regenerated. The results have recently been published in the scientific journal Neuron.

The human nervous system is composed of two parts, namely the central and peripheral nervous systems. Unlike the central nervous system, peripheral nerves have stronger ability to regrow and repair by themselves after injury. Scientists have yet to fully understand the relationship between this self-repair and the intrinsic immune mechanism of the nervous system. Two mysteries the team wanted to resolve were how immune-related signaling pathways affected neurons after injury, and whether they could enhance axonal regeneration directly.

This study investigated whether the signaling pathway IFNγ-cGAS-STING had any role in the regeneration process of peripheral nerves. Researchers found that peripheral axons could directly modulate the immune response in their injured environment to promote self-repair after injury.

In previous research, Prof. Liu's team had already demonstrated that elevating the neuronal activity and regulating the neuronal glycerolipid metabolism pathway could boost axon regenerative capacity. The current study is providing further insights into the search of treatment solutions for challenging conditions such as spinal cord injuries, with one possible option being the joining of several types of different signaling pathways.

The co-first authors of this project are Drs. Xu WANG and Chao YANG of HKUST. The work was done in collaboration with Prof. Zhong-Yin ZHANG of Purdue University alongside Profs. Ruohao WU, and Peiyuan QIAN, Jiguang WANG of HKUST.


Story Source:

Materials provided by Hong Kong University of Science and Technology. Note: Content may be edited for style and length.


Journal Reference:

  1. Xu Wang, Chao Yang, Xuejie Wang, Jinmin Miao, Weitao Chen, Yiren Zhou, Ying Xu, Yongyan An, Aifang Cheng, Wenkang Ye, Mengxian Chen, Dong Song, Xue Yuan, Jiguang Wang, Peiyuan Qian, Angela Ruohao Wu, Zhong-Yin Zhang, Kai Liu. Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNγ-cGAS-STING axis. Neuron, 2022; DOI: 10.1016/j.neuron.2022.10.028

Cite This Page:

Hong Kong University of Science and Technology. "Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system." ScienceDaily. ScienceDaily, 18 November 2022. <www.sciencedaily.com/releases/2022/11/221118095509.htm>.
Hong Kong University of Science and Technology. (2022, November 18). Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2022/11/221118095509.htm
Hong Kong University of Science and Technology. "Study reveals the intrinsic immune mechanism that boosts axon regeneration in the adult nervous system." ScienceDaily. www.sciencedaily.com/releases/2022/11/221118095509.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES