Featured Research

from universities, journals, and other organizations

New Fruit Fly Protein Illuminates Circadian Response To Light

Date:
June 29, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have identified a new protein required for the circadian response to light in fruit flies. The discovery of this protein -- named JET -- brings investigators one step closer to understanding the process by which the body's internal clock synchronizes to light. Understanding how light affects circadian (24-hour) rhythms will likely open doors to future treatments of jetlag.

Researchers at the University of Pennsylvania School of Medicine have identified a new protein required for the circadian response to light in fruit flies. The discovery of this protein - named JET - brings investigators one step closer to understanding the process by which the body’s internal clock synchronizes to light. Understanding how light affects circadian (24-hour) rhythms will likely open doors to future treatments of jetlag.

Related Articles


The body’s 24-hour clock controls a multitude of internal functions such as periods of sleep and wakefulness, body temperature, and metabolism. Although circadian function produces a stable rhythm in the body, the biological clock will reset in response to light. The human condition known as jet lag takes place during the period when the body is attempting to resynchronize to the environmental light changes brought on by travel, namely from one time zone to another.

A mutant fruit fly that possesses jetlag-like behaviors enabled senior author Amita Sehgal, PhD, Professor of Neuroscience at Penn and a Howard Hughes Medical Institute (HHMI) Investigator, and colleagues to identify the gene and subsequent protein that aids in the response of the internal biological clock to light. The researchers report their findings in most recent issue of Science.

To test the circadian rhythm of fruit flies, Sehgal and others exposed wild type (control) and mutant flies to several light and dark settings - constant darkness, constant light, and equal periods of light and darkness (a light-dark cycle). During exposure to constant light for one week, the controls developed a disrupted sleep pattern after a few days, while the mutants maintained a regular circadian rhythm. The mutant and control flies displayed no behavioral differences during their exposure to constant darkness and the light-dark cycle. However, when the fruit flies were shifted from one light-dark cycle to another, the mutant flies took two days longer to adjust their sleep-wake cycle to the new light-dark schedule.

“The behavior of the mutant flies is similar to that displayed in a person who has prolonged jetlag,” notes Sehgal. In search of answers to the mutant’s defective circadian response to light, Sehgal and colleagues looked to the molecular details of the clock cells in the jetlag flies.

When a fruit fly is exposed to light, a photoreceptor called cryptochrome (CRY) transduces the light signal and kicks off a series of reactions within the clock cells of the brain. Under normal conditions, CRY will respond to light by binding to a protein called timeless (TIM). A second protein, a member of the F-box protein family, also binds to TIM, signaling TIM for cellular destruction.

Genetic analysis revealed that the jetlag flies possess a mutation in a gene that encodes a member of the F-box protein family. A closer examination of the protein produced by the mutated sequence led researchers to JET, a new protein within the F-box protein family.

“Since the degradation of TIM always happens in the presence of light, the animal associates the absence of TIM with daytime hours,” explains Sehgal. The mutated JET protein reduces the light-dependent degradation of TIM and the circadian response to light.

Sehgal and others were able to reverse the behaviors in the jetlag flies by genetically replacing the mutated gene sequence with the normal sequence, which led to the production of the wild-type (control) JET protein. When the jetlag flies acquired the normal JET protein, regular TIM degradation took place and the fruit fly was better able to adjust to shifts in the light-dark cycle.

Future studies in the Sehgal lab will focus on continuing to identify other molecules required for the circadian response to light. “Some of the molecules required for the circadian light response in flies may be conserved in humans. Over time, we will have a better understanding of how the human clock responds to light and may be able to design drugs to treat jetlag,” concludes Sehgal.

Study co-authors are Kyunghee Koh and Xiangzhong Zheng, both from Penn. These studies were funded by the National Institutes of Health and HHMI.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "New Fruit Fly Protein Illuminates Circadian Response To Light." ScienceDaily. ScienceDaily, 29 June 2006. <www.sciencedaily.com/releases/2006/06/060629121414.htm>.
University of Pennsylvania School of Medicine. (2006, June 29). New Fruit Fly Protein Illuminates Circadian Response To Light. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2006/06/060629121414.htm
University of Pennsylvania School of Medicine. "New Fruit Fly Protein Illuminates Circadian Response To Light." ScienceDaily. www.sciencedaily.com/releases/2006/06/060629121414.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins