Featured Research

from universities, journals, and other organizations

New technology provides a deep view into protein structures

Date:
July 10, 2012
Source:
Universität Basel
Summary:
Proteins consist of a sequence of amino acids and have important physiological functions, such as catalysis or transport of metabolic products. To perform their physiological role, proteins need to fold their linear amino acid chains into a stable three-dimensional structure. In part, the spatial arrangement is determined by a network of hydrogen bonds. However so far it was unclear to what extent individual hydrogen bonds contribute to the stability of a structure. Using a newly developed high pressure cell and NMR method scientists have, for the first time, completely characterize the stability of individual hydrogen bonds in the protein Ubiquitin.

Under pressure: scientists investigate hydrogen bonds under pressures of up to 2500 bar.
Credit: Image courtesy of Universität Basel

Proteins consist of a sequence of amino acids and have important physiological functions, such as catalysis or transport of metabolic products. To perform their physiological role, proteins need to fold their linear amino acid chains into a stable three-dimensional structure. In part, the spatial arrangement is determined by a network of hydrogen bonds. However so far it was unclear to what extent individual hydrogen bonds contribute to the stability of a structure. Using a newly developed high pressure cell and NMR method Dr. Nisius and Prof. Grzesiek could, for the first time, completely characterize the stability of individual hydrogen bonds in the protein Ubiquitin.

Particular stability of key, long-range hydrogen bonds

The stability of a thermodynamic system, such as a protein, can be analyzed by subjecting it to variations in pressure and temperature. Using high resolution NMR methods and a newly developed pressure cell Nisius and Grzesiek have precisely analyzed the contributions of 31 backbone hydrogen bonds to the conformational stability of the model protein Ubiquitin. The pressure cell allows the observation of individual protein hydrogen bonds in the NMR instrument under pressures of up to 2500 bar. The latter is equivalent to the hydrostatic pressure of a water column of 25 km height. Hydrogen bonds spanning small sequence separations between the interacting amino acids were found to be particularly stable, whereas hydrogen bonds that span over larger sequence separations showed generally lower stability.

Surprisingly, however, there are exceptions to this rule: hydrogen bonds that connect very important parts of Ubiquitin, can span over large sequence separations and be nevertheless extremely stable. In particular, such unusually stable long-range hydrogen bonds were found in the structural part where Ubiquitin attaches to target proteins. By this covalent attachment, ubiquitin labels misfolded target proteins for degradation and fulfills its function in cellular protein quality control. The specific stabilization of hydrogen bonds at this site is therefore very important to preserve the structural integrity of Ubiquitin during function and to achieve stability for the entire protein.

Future oriented technology: High pressure-NMR

By the high pressure NMR characterization, Nisius and Grzesiek could identify the structural parts of Ubiquitin that are responsible for its unusually high thermodynamic stability. Their study is a further example of the multifaceted and growing range of NMR applications. The technology not only provides information on the three-dimensional structure of biomolecules, but also on their thermodynamic and kinetic characteristics, and thus is a crucial tool to understand biomolecular function at atomic resolution.


Story Source:

The above story is based on materials provided by Universität Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lydia Nisius, Stephan Grzesiek. Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nature Chemistry, 2012; DOI: 10.1038/nchem.1396

Cite This Page:

Universität Basel. "New technology provides a deep view into protein structures." ScienceDaily. ScienceDaily, 10 July 2012. <www.sciencedaily.com/releases/2012/07/120710093512.htm>.
Universität Basel. (2012, July 10). New technology provides a deep view into protein structures. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/07/120710093512.htm
Universität Basel. "New technology provides a deep view into protein structures." ScienceDaily. www.sciencedaily.com/releases/2012/07/120710093512.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) — With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins