New! Sign up for our free email newsletter.
Science News
from research organizations

Sweet! Glycocongugates are more than the sum of their sugars

Date:
August 25, 2014
Source:
Michigan Technological University
Summary:
Conventional wisdom says that the scaffold in an important class of biological molecules called 'glycoconjugates' is essentially inert. Work by a chemist suggests otherwise. The discovery opens up new avenues for research, in particular the development of more and better pharmaceuticals. Glycoconjugates are found naturally in the body, but they are also an important class of drugs that includes anything from cancer treatments to vaccines.
Share:
FULL STORY

There's a certain type of biomolecule built like a nano-Christmas tree. Called a glycoconjugate, it's many branches are bedecked with sugary ornaments.

It's those ornaments that get all the glory. That's because, according to conventional wisdom, the glycoconjugate's lowly "tree" basically holds the sugars in place as they do the important work of reacting with other molecules.

Now a biochemist at Michigan Technological University has discovered that the tree itself -- called the scaffold -- is a good deal more than a simple prop.

"We had always thought that all the biological function resides in the sugar," said Tarun Dam, principal investigator of the Mechanistic Glycobiology Lab at Michigan Tech. "People didn't appreciate that the scaffolds were active."

The discovery opens up new avenues for research, in particular the development of more and better pharmaceuticals. Glycoconjugates are found naturally in the body, but they are also an important class of drugs that includes anything from cancer treatments to vaccines.

To determine if the scaffold had a role to play in biological reactions, Dam and his team built and tested two types of glycoconjugate molecules. They had the same sugars and virtually identical shapes but were comprised of different scaffolds, one made of protein, the other a synthetic. The scientists then tested how the different glycoconjugates reacted with biomolecules called lectins. Lectins play an important role in numerous biological processes and are a target for many glycoconjugate drugs.

If the scaffolds had been inert, the reactions would have been identical. However, the sugars on the protein scaffold reacted with the lectins differently.

"If the scaffolds are different, they can cause my drug to work one way and your drug to work another way, even though they have similar epitopes [sugars]," Dam said. "Tweaking the scaffold can change the drug's function."

An article on their study, "Significant Other Half of a Glycoconjugate: Contributions of Scaffolds to Lectin-Glycoconjugate Interactions," was published in the July 15 edition of Biochemistry.


Story Source:

Materials provided by Michigan Technological University. Original written by Marcia Goodrich. Note: Content may be edited for style and length.


Journal Reference:

  1. Melanie L. Talaga, Ni Fan, Ashli L. Fueri, Robert K. Brown, Yoann M. Chabre, Purnima Bandyopadhyay, René Roy, Tarun K. Dam. Significant Other Half of a Glycoconjugate: Contributions of Scaffolds to Lectin–Glycoconjugate Interactions. Biochemistry, 2014; 53 (27): 4445 DOI: 10.1021/bi5001307

Cite This Page:

Michigan Technological University. "Sweet! Glycocongugates are more than the sum of their sugars." ScienceDaily. ScienceDaily, 25 August 2014. <www.sciencedaily.com/releases/2014/08/140825142126.htm>.
Michigan Technological University. (2014, August 25). Sweet! Glycocongugates are more than the sum of their sugars. ScienceDaily. Retrieved April 25, 2024 from www.sciencedaily.com/releases/2014/08/140825142126.htm
Michigan Technological University. "Sweet! Glycocongugates are more than the sum of their sugars." ScienceDaily. www.sciencedaily.com/releases/2014/08/140825142126.htm (accessed April 25, 2024).

Explore More

from ScienceDaily

RELATED STORIES