New! Sign up for our free email newsletter.
Science News
from research organizations

The fine-tuning of human color perception

Date:
December 18, 2014
Source:
PLOS
Summary:
The evolution of trichromatic color vision in humans occurred by first switching from the ability to detect UV light to blue light (between 80-30 MYA) and then by adding green-sensitivity (between 45-30 MYA) to the preexisting red-sensitivity in the vertebrate ancestor. The detailed molecular and functional changes of the human color vision have now been determined.
Share:
FULL STORY

The evolution of trichromatic color vision in humans occurred by first switching from the ability to detect UV light to blue light (between 80-30 MYA) and then by adding green-sensitivity (between 45-30 MYA) to the preexisting red-sensitivity in the vertebrate ancestor. The detailed molecular and functional changes of the human color vision have been revealed by Shozo Yokoyama et al. Emory University and is published in the journal PLOS GENETICS.

The molecular basis of functional differentiation is a fundamental question in biology. To fully appreciate how these changes are generated, it is necessary to evaluate the relationship between genes and functions. This is a difficult task because new mutations can produce different functional changes when they occur with different preexisting mutations, causing complex non-additive interactions.

The blue-sensitive visual pigment in human evolved from the UV-sensitive pigment in the ancient Boreoeutherian ancestor by seven mutations. There are 5,040 possible evolutionary paths connecting them. The team examined experimentally the genetic composition and color perception of the visual pigment at every evolutionary step of all 5,040 trajectories. They found that 4,008 trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Eight most likely trajectories reveal that the blue-sensitivity evolved gradually almost exclusively by non-additive interactions among the seven mutations.

These analyses demonstrates that the historical sequence of change is critical to our understanding of molecular evolution and emphasizes that genetic engineering of ancestral molecules is the key to decode the complex interactions of mutations within a protein and their effects on functional change.


Story Source:

Materials provided by PLOS. Note: Content may be edited for style and length.


Journal Reference:

  1. Shozo Yokoyama, Jinyi Xing, Yang Liu, Davide Faggionato, Ahmet Altun, William T. Starmer. Epistatic Adaptive Evolution of Human Color Vision. PLOS Genetics, 18 Dec 2014 DOI: 10.1371/journal.pgen.1004884

Cite This Page:

PLOS. "The fine-tuning of human color perception." ScienceDaily. ScienceDaily, 18 December 2014. <www.sciencedaily.com/releases/2014/12/141218141050.htm>.
PLOS. (2014, December 18). The fine-tuning of human color perception. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2014/12/141218141050.htm
PLOS. "The fine-tuning of human color perception." ScienceDaily. www.sciencedaily.com/releases/2014/12/141218141050.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

MORE COVERAGE

RELATED STORIES